Averiguar, completar número de móvil

¿Sería posible completar un número de móvil del que solo recuerdo los 3 primeros dígitos y los 3 últimos?

1 respuesta

Respuesta
1

Si, inventando los 3 de en medio unas 1000 combinaciones. Bromas a parte, es difícil sin saber de quien es sin más datos. Si te ha llamado debe haber un registro de ese numero en la compañía, aunque a veces es difícil acceder a esos datos, pero no imposible.

Es importante para mi. Era una oferta de trabajo y recuerdo la foto del WhatsApp. Tengo que averiguarlo antes de que la cambie. Ya he probado un montón de combinaciones y nada. Cómo hago las 1000 que dices? He probado con las calculadoras que hay en Internet pero no las entiendo. Podrías intentarlo tú y pasarme la lista de combinaciones de 3 dígitos, POR FAVOR!

Es del 000 al 999, ves descartando los números que vayas probando.

Hay hay otras opciones pero entrañan cierto riesgo:

https://www.whatsapp.com/faq/es/general/21197296 

https://www.whatsapp.com/faq/es/android/20887921 

http://whatsapp-recovery.softonic.com/ 

Ya, gracias pero no me ayuda. Solo guarde el número para escribir más tarde porque tenía otras ofertas primero. Buaaaah. No sé que hacer! Si por lo menos supuesta usar las calculadoras de Internet. Porque no se repetían los números y con eso hay menos combinaciones. En fin, gracias por tu ayuda. Un saludo

Según lo que me comentas, en principio serian estas combinaciones:

$$\begin{align}&\frac{n!}{r!(n-r)!}\\&\\&\end{align}$$

Combinaciones sin repetición (n=10, r=3)
{0,1,2} {0,1,3} {0,1,4} {0,1,5} {0,1,6} {0,1,7} {0,1,8} {0,1,9} {0,2,3} {0,2,4} {0,2,5} {0,2,6} {0,2,7} {0,2,8} {0,2,9} {0,3,4} {0,3,5} {0,3,6} {0,3,7} {0,3,8} {0,3,9} {0,4,5} {0,4,6} {0,4,7} {0,4,8} {0,4,9} {0,5,6} {0,5,7} {0,5,8} {0,5,9} {0,6,7} {0,6,8} {0,6,9} {0,7,8} {0,7,9} {0,8,9} {1,2,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7} {1,2,8} {1,2,9} {1,3,4} {1,3,5} {1,3,6} {1,3,7} {1,3,8} {1,3,9} {1,4,5} {1,4,6} {1,4,7} {1,4,8} {1,4,9} {1,5,6} {1,5,7} {1,5,8} {1,5,9} {1,6,7} {1,6,8} {1,6,9} {1,7,8} {1,7,9} {1,8,9} {2,3,4} {2,3,5} {2,3,6} {2,3,7} {2,3,8} {2,3,9} {2,4,5} {2,4,6} {2,4,7} {2,4,8} {2,4,9} {2,5,6} {2,5,7} {2,5,8} {2,5,9} {2,6,7} {2,6,8} {2,6,9} {2,7,8} {2,7,9} {2,8,9} {3,4,5} {3,4,6} {3,4,7} {3,4,8} {3,4,9} {3,5,6} {3,5,7} {3,5,8} {3,5,9} {3,6,7} {3,6,8} {3,6,9} {3,7,8} {3,7,9} {3,8,9} {4,5,6} {4,5,7} {4,5,8} {4,5,9} {4,6,7} {4,6,8} {4,6,9} {4,7,8} {4,7,9} {4,8,9} {5,6,7} {5,6,8} {5,6,9} {5,7,8} {5,7,9} {5,8,9} {6,7,8} {6,7,9} {6,8,9} {7,8,9}

¡Gracias! Pero faltaría empezando por 8 y por 9,no? Si es así creo que lo puedo hacer yo. Muchas gracias!

Algo falla porque dónde está el 21x por ejemplo? Debe ser otra fórmula, no?

Tienes toda la razón, estaba mal aplicada. Ahora si, los 720 números sin repeticiones entre ellos, unos cuantos.

Permutaciones sin repetición (n=10, r=3)

{0,1,2} {0,1,3} {0,1,4} {0,1,5} {0,1,6} {0,1,7} {0,1,8} {0,1,9}

{0,2,1} {0,2,3} {0,2,4} {0,2,5} {0,2,6} {0,2,7} {0,2,8} {0,2,9}

{0,3,1} {0,3,2} {0,3,4} {0,3,5} {0,3,6} {0,3,7} {0,3,8} {0,3,9}

{0,4,1} {0,4,2} {0,4,3} {0,4,5} {0,4,6} {0,4,7} {0,4,8} {0,4,9}

{0,5,1} {0,5,2} {0,5,3} {0,5,4} {0,5,6} {0,5,7} {0,5,8} {0,5,9}

{0,6,1} {0,6,2} {0,6,3} {0,6,4} {0,6,5} {0,6,7} {0,6,8} {0,6,9}

{0,7,1} {0,7,2} {0,7,3} {0,7,4} {0,7,5} {0,7,6} {0,7,8} {0,7,9}

{0,8,1} {0,8,2} {0,8,3} {0,8,4} {0,8,5} {0,8,6} {0,8,7} {0,8,9}

{0,9,1} {0,9,2} {0,9,3} {0,9,4} {0,9,5} {0,9,6} {0,9,7} {0,9,8}

{1,0,2} {1,0,3} {1,0,4} {1,0,5} {1,0,6} {1,0,7} {1,0,8} {1,0,9}

{1,2,0} {1,2,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7} {1,2,8} {1,2,9}

{1,3,0} {1,3,2} {1,3,4} {1,3,5} {1,3,6} {1,3,7} {1,3,8} {1,3,9}

{1,4,0} {1,4,2} {1,4,3} {1,4,5} {1,4,6} {1,4,7} {1,4,8} {1,4,9}

{1,5,0} {1,5,2} {1,5,3} {1,5,4} {1,5,6} {1,5,7} {1,5,8} {1,5,9}

{1,6,0} {1,6,2} {1,6,3} {1,6,4} {1,6,5} {1,6,7} {1,6,8} {1,6,9}

{1,7,0} {1,7,2} {1,7,3} {1,7,4} {1,7,5} {1,7,6} {1,7,8} {1,7,9}

{1,8,0} {1,8,2} {1,8,3} {1,8,4} {1,8,5} {1,8,6} {1,8,7} {1,8,9}

{1,9,0} {1,9,2} {1,9,3} {1,9,4} {1,9,5} {1,9,6} {1,9,7} {1,9,8}

{2,0,1} {2,0,3} {2,0,4} {2,0,5} {2,0,6} {2,0,7} {2,0,8} {2,0,9}

{2,1,0} {2,1,3} {2,1,4} {2,1,5} {2,1,6} {2,1,7} {2,1,8} {2,1,9}

{2,3,0} {2,3,1} {2,3,4} {2,3,5} {2,3,6} {2,3,7} {2,3,8} {2,3,9}

{2,4,0} {2,4,1} {2,4,3} {2,4,5} {2,4,6} {2,4,7} {2,4,8} {2,4,9}

{2,5,0} {2,5,1} {2,5,3} {2,5,4} {2,5,6} {2,5,7} {2,5,8} {2,5,9}

{2,6,0} {2,6,1} {2,6,3} {2,6,4} {2,6,5} {2,6,7} {2,6,8} {2,6,9}

{2,7,0} {2,7,1} {2,7,3} {2,7,4} {2,7,5} {2,7,6} {2,7,8} {2,7,9}

{2,8,0} {2,8,1} {2,8,3} {2,8,4} {2,8,5} {2,8,6} {2,8,7} {2,8,9}

{2,9,0} {2,9,1} {2,9,3} {2,9,4} {2,9,5} {2,9,6} {2,9,7} {2,9,8}

{3,0,1} {3,0,2} {3,0,4} {3,0,5} {3,0,6} {3,0,7} {3,0,8} {3,0,9}

{3,1,0} {3,1,2} {3,1,4} {3,1,5} {3,1,6} {3,1,7} {3,1,8} {3,1,9}

{3,2,0} {3,2,1} {3,2,4} {3,2,5} {3,2,6} {3,2,7} {3,2,8} {3,2,9}

{3,4,0} {3,4,1} {3,4,2} {3,4,5} {3,4,6} {3,4,7} {3,4,8} {3,4,9}

{3,5,0} {3,5,1} {3,5,2} {3,5,4} {3,5,6} {3,5,7} {3,5,8} {3,5,9}

{3,6,0} {3,6,1} {3,6,2} {3,6,4} {3,6,5} {3,6,7} {3,6,8} {3,6,9}

{3,7,0} {3,7,1} {3,7,2} {3,7,4} {3,7,5} {3,7,6} {3,7,8} {3,7,9}

{3,8,0} {3,8,1} {3,8,2} {3,8,4} {3,8,5} {3,8,6} {3,8,7} {3,8,9}

{3,9,0} {3,9,1} {3,9,2} {3,9,4} {3,9,5} {3,9,6} {3,9,7} {3,9,8}

{4,0,1} {4,0,2} {4,0,3} {4,0,5} {4,0,6} {4,0,7} {4,0,8} {4,0,9}

{4,1,0} {4,1,2} {4,1,3} {4,1,5} {4,1,6} {4,1,7} {4,1,8} {4,1,9}

{4,2,0} {4,2,1} {4,2,3} {4,2,5} {4,2,6} {4,2,7} {4,2,8} {4,2,9}

{4,3,0} {4,3,1} {4,3,2} {4,3,5} {4,3,6} {4,3,7} {4,3,8} {4,3,9}

{4,5,0} {4,5,1} {4,5,2} {4,5,3} {4,5,6} {4,5,7} {4,5,8} {4,5,9}

{4,6,0} {4,6,1} {4,6,2} {4,6,3} {4,6,5} {4,6,7} {4,6,8} {4,6,9}

{4,7,0} {4,7,1} {4,7,2} {4,7,3} {4,7,5} {4,7,6} {4,7,8} {4,7,9}

{4,8,0} {4,8,1} {4,8,2} {4,8,3} {4,8,5} {4,8,6} {4,8,7} {4,8,9}

{4,9,0} {4,9,1} {4,9,2} {4,9,3} {4,9,5} {4,9,6} {4,9,7} {4,9,8}

{5,0,1} {5,0,2} {5,0,3} {5,0,4} {5,0,6} {5,0,7} {5,0,8} {5,0,9}

{5,1,0} {5,1,2} {5,1,3} {5,1,4} {5,1,6} {5,1,7} {5,1,8} {5,1,9}

{5,2,0} {5,2,1} {5,2,3} {5,2,4} {5,2,6} {5,2,7} {5,2,8} {5,2,9}

{5,3,0} {5,3,1} {5,3,2} {5,3,4} {5,3,6} {5,3,7} {5,3,8} {5,3,9}

{5,4,0} {5,4,1} {5,4,2} {5,4,3} {5,4,6} {5,4,7} {5,4,8} {5,4,9}

{5,6,0} {5,6,1} {5,6,2} {5,6,3} {5,6,4} {5,6,7} {5,6,8} {5,6,9}

{5,7,0} {5,7,1} {5,7,2} {5,7,3} {5,7,4} {5,7,6} {5,7,8} {5,7,9}

{5,8,0} {5,8,1} {5,8,2} {5,8,3} {5,8,4} {5,8,6} {5,8,7} {5,8,9}

{5,9,0} {5,9,1} {5,9,2} {5,9,3} {5,9,4} {5,9,6} {5,9,7} {5,9,8}

{6,0,1} {6,0,2} {6,0,3} {6,0,4} {6,0,5} {6,0,7} {6,0,8} {6,0,9}

{6,1,0} {6,1,2} {6,1,3} {6,1,4} {6,1,5} {6,1,7} {6,1,8} {6,1,9}

{6,2,0} {6,2,1} {6,2,3} {6,2,4} {6,2,5} {6,2,7} {6,2,8} {6,2,9}

{6,3,0} {6,3,1} {6,3,2} {6,3,4} {6,3,5} {6,3,7} {6,3,8} {6,3,9}

{6,4,0} {6,4,1} {6,4,2} {6,4,3} {6,4,5} {6,4,7} {6,4,8} {6,4,9}

{6,5,0} {6,5,1} {6,5,2} {6,5,3} {6,5,4} {6,5,7} {6,5,8} {6,5,9}

{6,7,0} {6,7,1} {6,7,2} {6,7,3} {6,7,4} {6,7,5} {6,7,8} {6,7,9}

{6,8,0} {6,8,1} {6,8,2} {6,8,3} {6,8,4} {6,8,5} {6,8,7} {6,8,9}

{6,9,0} {6,9,1} {6,9,2} {6,9,3} {6,9,4} {6,9,5} {6,9,7} {6,9,8}

{7,0,1} {7,0,2} {7,0,3} {7,0,4} {7,0,5} {7,0,6} {7,0,8} {7,0,9}

{7,1,0} {7,1,2} {7,1,3} {7,1,4} {7,1,5} {7,1,6} {7,1,8} {7,1,9}

{7,2,0} {7,2,1} {7,2,3} {7,2,4} {7,2,5} {7,2,6} {7,2,8} {7,2,9}

{7,3,0} {7,3,1} {7,3,2} {7,3,4} {7,3,5} {7,3,6} {7,3,8} {7,3,9}

{7,4,0} {7,4,1} {7,4,2} {7,4,3} {7,4,5} {7,4,6} {7,4,8} {7,4,9}

{7,5,0} {7,5,1} {7,5,2} {7,5,3} {7,5,4} {7,5,6} {7,5,8} {7,5,9}

{7,6,0} {7,6,1} {7,6,2} {7,6,3} {7,6,4} {7,6,5} {7,6,8} {7,6,9}

{7,8,0} {7,8,1} {7,8,2} {7,8,3} {7,8,4} {7,8,5} {7,8,6} {7,8,9}

{7,9,0} {7,9,1} {7,9,2} {7,9,3} {7,9,4} {7,9,5} {7,9,6} {7,9,8}

{8,0,1} {8,0,2} {8,0,3} {8,0,4} {8,0,5} {8,0,6} {8,0,7} {8,0,9}

{8,1,0} {8,1,2} {8,1,3} {8,1,4} {8,1,5} {8,1,6} {8,1,7} {8,1,9}

{8,2,0} {8,2,1} {8,2,3} {8,2,4} {8,2,5} {8,2,6} {8,2,7} {8,2,9}

{8,3,0} {8,3,1} {8,3,2} {8,3,4} {8,3,5} {8,3,6} {8,3,7} {8,3,9}

{8,4,0} {8,4,1} {8,4,2} {8,4,3} {8,4,5} {8,4,6} {8,4,7} {8,4,9}

{8,5,0} {8,5,1} {8,5,2} {8,5,3} {8,5,4} {8,5,6} {8,5,7} {8,5,9}

{8,6,0} {8,6,1} {8,6,2} {8,6,3} {8,6,4} {8,6,5} {8,6,7} {8,6,9}

{8,7,0} {8,7,1} {8,7,2} {8,7,3} {8,7,4} {8,7,5} {8,7,6} {8,7,9}

{8,9,0} {8,9,1} {8,9,2} {8,9,3} {8,9,4} {8,9,5} {8,9,6} {8,9,7}

{9,0,1} {9,0,2} {9,0,3} {9,0,4} {9,0,5} {9,0,6} {9,0,7} {9,0,8}

{9,1,0} {9,1,2} {9,1,3} {9,1,4} {9,1,5} {9,1,6} {9,1,7} {9,1,8}

{9,2,0} {9,2,1} {9,2,3} {9,2,4} {9,2,5} {9,2,6} {9,2,7} {9,2,8}

{9,3,0} {9,3,1} {9,3,2} {9,3,4} {9,3,5} {9,3,6} {9,3,7} {9,3,8}

{9,4,0} {9,4,1} {9,4,2} {9,4,3} {9,4,5} {9,4,6} {9,4,7} {9,4,8}

{9,5,0} {9,5,1} {9,5,2} {9,5,3} {9,5,4} {9,5,6} {9,5,7} {9,5,8}

{9,6,0} {9,6,1} {9,6,2} {9,6,3} {9,6,4} {9,6,5} {9,6,7} {9,6,8}

{9,7,0} {9,7,1} {9,7,2} {9,7,3} {9,7,4} {9,7,5} {9,7,6} {9,7,8}

{9,8,0} {9,8,1} {9,8,2} {9,8,3} {9,8,4} {9,8,5} {9,8,6} {9,8,7}

¡Gracias! Muchísimas gracias Salao!

De anda.

De nada.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas