Tanque

Un tanque de almacenamiento de agua de forma cilíndrica y de 15 pies de diámetro, está montado de tal modo que los cortes circulares son verticales. Si la profundidad del agua es de 10 pies, ¿qué porcentaje de la capacidad total tiene agua?

1 Respuesta

Respuesta
1
Aproximadamente 70.8208 por ciento
Hey Frodarte por favor dime si está correcto el resultado.
Pero cómo obtuviste ese resultado, lo que pasa es que yo había obtenido 70 y resultó incorrecto.
Intentaré explicarlo,
También espero me digas como lo resolviste tú y cuanto es el resultado que se supone es correcto, yo insisto que está bien 70.82 por ciento.
Bueno ahí voy:
Primero tomé un círculo de 15 pies de diámetro y lo dividí en tres partes o áreas.
La primera área se forma dividiendo al círculo a la mitad. Se forma un semicírculo con lado 15 pies y una altura de 7.5 pies. Imagina el semicírculo hacia abajo.
La segunda parte la formé tomando 2.5 pies hacia arriba de la primera área, para que sean los 10 pies que se piden(la altura del agua). Aquí se forma un área con un lado de 15 pies, altura de 2.5 pies y 2 lados curvos.
La tercera parte es el semicírculo que queda arriba, de altura 5 pies.
Dibújalo para que sea más fácil entenderlo.
Bueno lo que hay que hacer es saber cuanto vale la segunda área.
Bien la segunda área, la que queda en medio de las tres tiene un lado de 15 pies, un lado recto de longitud desconocida, una altura de 2.5 pies y dos lados cortos curvos.
Bien ahora dividí a esa segunda área en dos partes. La dividí por el centro a la mitad del diámetro de la circunferencia es decir a los 7.5 pies puse un punto de la recta divisoria y el otro punto arriba 2.5 pies.
Quedan dos figuras parecidas de igual área por supuesto. Vamos a llamarles a esas partes mitades de la segunda parte.
Tomo una mitad de la segunda parte y veo es una figura que tiene un lado recto de 7.5 pies, otro lado que es una recta de 2.5 pies, otro lado que es una recta que no se cuanto mide y un lado curvo.
Ahora tomo esta mitad de la segunda parte y la divido en dos partes.
La divido así: en el vértice de las rectas 2.5 pies y 7.5pies(que viene siendo el centro de la circunferencia) pongo un punto de una recta divisoria, el otro punto lo pongo donde termina la recta de longitud desconocida y empieza el arco.
Entonces se han formado otras dos figuras que son un triángulo rectángulo y un sector de círculo de radio r (7.5 pies).
Bien el triángulo rectángulo tiene un lado de 2.5 pies y un angulo recto por lo que el tercer lado desconocido mide: b= raíz cuadrada de a^2-c^2=7.0711 pies.
El área del triángulo es:
base x altura/2=
2.5 pies x 7.0711 pies/2=
8.8388 pies cuadrados.
El área del sector circular de radio r es:
(Pi)(r^2)(número de grados del ángulo)/360 grados
Entonces falta saber el ángulo del sector circular.
Para ello hallo el ángulo del triángulo rectángulo, el que se forma con el lado 7.5 pies y con el lado 7.0711 pies.
Digo sen c =c/a = 2.5/7.5=
=0.3333
sen^-1 0.333= 19.4712 grados
Ahora bien este ángulo es igual al del sector circular por ser ángulos alternos internos en dos paralelas cortadas por una secante.
Bueno entonces el área del sector circular es:
área=(pi)(r^2)(número de grados del ángulo)/360 grados
= pi (7.5^2)(19.4712)/360=
=9.5579 pies cuadrados.
Ahora sumo el triángulo y el sector circular:
8.8388 pies c +9.5579 pies c=
=18.3967 pies cuadrados.
Y ya tengo el área de la mitad de la segunda parte.
Por lo que la segunda parte son 18.3967 pies c por 2=
área de la segunda parte=36.7934 pies cuadrados.
El área de la primera parte es la mitad del área total.
área total= pi r^2
= pi 7.5^2 = 176.7146 pies cuadrados.
El área de la primera parte es : 88.3573 pies cuadrados
porque es la mitad.
Sumo la primera parte y la segunda parte (para que la altura sea 10 pies) y me dan:
88.3573pies c+36.7934 pies c=
=125.1507 pies cuadrados.
¿Si el área total es de 176.7146 pies cuadrados porcentaje del área total ocupan los 125.1507 pies c?
serían= 125.1507piesc por 100%/176.7146 pies cuadrados=
= 70.8208 %
Suponiendo que tenemos 1 pie de profundidad del tanque:
vol total= 176.7146 pies cúbicos
vol hasta los 10 pies de altura = 125.1507 pies cúbicos
porcentaje= 70.8208 %
Por favor si estoy equivocado
Dime como se resuelve o donde está mi error, no quiero quedarme con la duda, además ya le dediqué bastante tiempo, créeme.
O pregúntale a quien te dijo que 70.82 % está mal, cuanto es el resultado y como se obtiene, probablemente el esté mal. Espero ansioso respuesta de tu parte :)
Mi correo es:
[email protected]
Atentamente: sagageminis
¿Frodarte qué pasa?
Contesta, cual es según tu el resultado, ¿cómo lo hiciste?
Pues yo obtuve el volumen con el de 15 pies y con altura h, y lo igualé al 100% y después obtuve el de 10 (tomando como referencia una circunferencia de radio 10) y saqué una regla de 3, donde obtuve que el de 1o pies ocupaba el 70%
Disculpa por no haber contestado antes, he estado muy ocupado.
Bien si tu obtuviste 70% y yo obtuve 70.82% entonces estamos bien, el que está mal es tu maestro.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas