Movimiento rectilíneo uniforme

Dos autos (A Y B ) que están separados por 1500 m. A parte con una velocidad constante de 60 k.m/h y 15 segundos después parte B con una velocidad de 80 km/h. ¿en qué tiempo y a que distancia se encuentran?
Recuerda que esta pregunta ya te la había hecho antes pero lo que se me dificulta es que ambos autos parten de distinta forma la diferencia es que A parte primero y B parte 15 segundos después.. Recuerda que ambos autos están en sentido contrario A va HACIA EL PUNTO B y B VA HACIA EL PUNTO A con la idea de cruzarse.. Se lo envíe a otro experto pero no le entendí nada por eso te agregue a mis favoritos bueno gracias y bye..

1 Respuesta

Respuesta
1
Este problema es "relativamente" más sencillo
Recuerda la fórmula de la intentar
S = So + VxT
Sabemos que para A So es 1500 y que ademas "lleva circulando 15 segundos mas que B) por tanto la formula de A es
S = 1500 + Vx(t + 15)
Y para B
S = Vxt
Recuerda pasamos la velocidad a metros por segundo
80 x 1000/3600 = 22.22
60 x 1000/3600 = 16.67
Entonces para A y para B
S = 1500 + 16.67 (t + 15)
S = 22.22 t
Como llega un momento que se encuentran podemos igualarlas
1500+16.67(t+15)=22.22t
Realiamos los calculos y despejamos el tiempo
1500 + 16.67t + 15x16.67=
22.22t
1500 + 250 = 22.22t-16.67t
1750 = 5.55t
t = 315.3s (del momento de partida de B)
Por tanto sustituimos en S
S = 22.22 x 315.3
S = 7006 metros desde el origen
Si sustituimos en A
S = 1500 + 16.67 x (315.3+15)
S = 1500 + 16.67 x 330.3
S = 7006 metros
Todos estos problemas se hacen igual... se pone la fórmula del espacio, teniendo en cuenta la intentar de cada vehículo, y su dirección (para el signo de la velocidad)... se igulan los espacios y se despeja el tiempo
PD: no olvides pasar la velocidad a mestros por segundo

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas