Aquí conviene dividir el problema en 2 partes según sus componentes vertical Vy y horizontal Vx
Vx=20cos60=10 m/s
Vy=20sen60=17.32 m/s.
Siendo "Y" el desplazamiento vertical y "t" el tiempo en el que el proyectil llega al suelo. Es necesario calcular "t", para lo cual consideramos que la dirección hacia arriba es positiva (Vy=17.32m/s). "g" la aceleración de la gravedad que al ir el proyectil hacia arriba, se considera negativa. g=-9.8m/s^2.
Como el proyectil se eleva y luego regresa al suelo, Y=0. Aplicando la formula: Y=Vyt+(1/2)g(t^2)
0=17.32t+(1/2)(-9.8)(t^2). Resolviendo para t=3.5 s.
Par calcular la distancia "X" se tiene:
Vx(t)=10(3.5)=35 m
Aquí también se supone que la velocidad en "X" se mantiene constante, ya que el enunciado no menciona cambios especiales en velocidad o aceleración durante toda la trayectoria.