Es sobre limites de funciones

lim f(x)=L , cuando x->x0,demostrar que existen d>0 y M>0 tales que |f(x)|<M,si xE(x0-d,x0+d)

1 Respuesta

Respuesta
1

Por ser L el límite de f(x) cuando x --> xo se cumple que dado cualquier epsilon > 0 existe un entorno abierto de radio delta alrededor de xo donde todos sus elementos salvo xo (llamémosles x) verifican que |f(x)-L|<epsilon

Entonces tomemos un epsilon cualquiera y tomaremos como d el delta que le corresponde, entonces todos los x del entorno (salvo si acaso el propio xo) verifican

|f(x) - L| < epsilon

|f(x) - L| + |L| < epsilon + |L|

usamos la propiedad triangular del valor absoluto

|f(x)| = |(f(x) - L) + L| <= |f(x) - L| + |L| < epsilon + |L|

|f(x)| < |L|+ epsilon

para todo x € (xo-d, xo+d) - {xo}

para hacer que en xo también haya una cota, haremos que si si |f(xo)| > |L|+epsilon tomaremos como cota |f(xo)|+epsilon

M = epsilon + max{|L|, |f(xo)|}

Como puede verse no hay un d y M únicos, sino que dependen de un epsilon que debemos tomar, cuanto mas pequeño sea epsilon más pequeños serán d y M.

Y eso es todo.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas