Encontrar la solución para el siguiente de interés compuesto

Si de una inversión de $50, 000.00 se llegan a obtener $80, 000.00 al cabo de 5 años a una tasa de interés capitalizable trimestralmente:
- ¿Cuál es la tasa de interés nominal?
- Con capitalización semestral.
- Interpretación. Los periodos de capitalización son __________p.p. Que generan una tasa de interés de __________mas.

1 Respuesta

Respuesta
1

·

Esto de las tasas capitalizables es un poco lioso. Vamos a calcular directamente la tasa efectiva trimestral. Entonces como cada año tiene cuatro trimestres el número de periodos a usar en la fórmula será 5·4 = 20

$$\begin{align}&V_n=V_0(1+i)^n\\&\\&V_{20}=V_0(1+i)^{20}\\&\\&\text {sustituimos los datos}\\&\\&80000 = 50000(1+i)^{20}\\&\\&(1+i)^{20} = \frac{80000}{50000}=1.6\\&\\&1+i = 1.6^{\;1/20}=1.023778486523798\\&\\&i= 0.023778486523798\\&\\&i = 2.3778486523798\%\\&\\&\text{Y la tasa nominal anual es esta multiplcada por 4}\\&\text{La llamaré TNA por decir algo}\\&\\&\\&TNA= 4·2.3778486523798\%=\\&9.511394609519108\%\\&\\&\text{Y tomando solo dos decimales}\\&\\&TNA=9.51\%\end{align}$$

·

-----------------------------------------------

·

Si la capitalización fuese semestral habría que calcular el interés efectivo semestral y multiplicarlo por 2.

No es necesario empezar de nuevo. Con el dato

1+i = 1.023778486523798

Del apartado anterior se calcula el monto semestral sin más que elevarlo al cuadrado

(1+i)^2 = 1.023778486523798^2 = 1.048122389468958

luego el interés efectivo semestral ha sido

0.048122389468958 = 4.8122389468958%

para la tasa nominal anual lo multiplicamos por 2

2 · 4.8122389468958% = 9.6244778937916%

y tomamos solo 2 decimales

TNA = 9.62

·

----------------------------

·

No se lo que hay que escribir en la línea esa de interpretación, a lo mejor tú lo sabes. En todo caso tienes las dos tasas calculadas para poner lo que haga falta.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas