Una partícula A choca elásticamente con otra partícula de masa B que inicialmente está en reposo. La partícula A que impacta

Fisca general

Una partícula A choca elásticamente
Con otra partícula de masa B que inicialmente está en reposo. La partícula A que impacta tiene una rapidez
inicial de𝑣𝑖1𝑚/𝑠 (4.20) y hace una colisión oblicua con la partícula B, como muestra la Figura. Después de la
colisión, la partícula A se aleja en un ángulo de𝜃
𝑜
(48.0) hacia la dirección de movimiento original y la partícula
B se desvía a un ángulo ɸ con el mismo eje. Encuentre las magnitudes de velocidad finales de las dos
partículas y el ángulo ɸ.
Nota: Asuma que las partículas tienen igual masa

1 respuesta

Respuesta
1

 En el choque elástico se conserva la cantidad de movimiento Y  la Energia Mecanica o sea E.C. del estado inicial = E.C. del estado final.

Como decís que las masas son las mismas ( m1=m2) tendrías:

m1 vi1 = m1 vf1  +  m2 vf2 ........................Vectorial.

1/2 m1 vi1^2 = 1/2 m1 vf1^2 + 1/2 m2 vf2^2 .....Escalar.

Siendo iguales las masas se simplifican ( asi como los 1/2 de las E.C.) y queda una simple relacion triangular ..........Tendrias el triangulo de base Vi= 4.20 m/s y lados vf1  y   vf2. El triangulo es cerrado y por la condicion de las E.C. tambien será  triangulo rectangulo ( Pitagoras). TE CONVIENE HACER EL DIBUJO DEL TRIANGULO....... Luego podes hallar:

Angulo de salida de m2 = 90 - 48 = 42° .............Angulo de salida de m1 = 48° (Dato).

Las velocidades luego del impacto las obtenes por el teorema del seno:

vf1 / sen 42° = vf2/ sen 48°= vi1 / sen 90° = 4.20 m/s

vf1 =  4.20 sen 42° = 2.81 m/s...............................vf2= 4.20 sen 48° = 3.12 m/s

Todo el desarrollo se hizo suponiendo m1=m2.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas