Me puede apoyar con este último planteamiento
Una institución educativa está haciendo sus evaluaciones de medio término. En un examen de opción múltiple, un docente cuestiona la posibilidad de que los alumnos atinen al azar las respuestas correctas. Si la probabilidad es mayor al 5 %, entonces no se procede con esta prueba.
● Calcula la probabilidad de que en un grupo de cuatro preguntas se respondan tres de forma correcta contestando al azar.
Cada pregunta tiene cinco opciones, de las cuales solamente una es correcta. Sugerencia: puedes aplicar la distribución binomial.
● De acuerdo con el estándar establecido, no mayor al 5 % de probabilidad de que los alumnos atinen al azar las respuestas, ¿se aprobaría o rechazaría la prueba?
b. Esta institución cuenta con una matrícula total de 1,200 alumnos. En ella, han decidido realizar una prueba piloto, por eso van a aplicar el examen a una muestra. La idea es contar con información suficiente para la toma de decisiones. Para esto, se determina que el intervalo de confianza sea del 95 % y el margen de error del 5 % y así considerarlo como muestra significativa.
● ¿De qué tamaño debe ser la muestra para cumplir los requisitos del intervalo de confianza y el margen de error establecidos?
c. El día que se realizó la prueba hubo ausentismo y solamente pudieron aplicarla 220 alumnos.
● Calcula el margen de error de la aplicación real de la encuesta .