Definición de conjuntos en matemáticas

Es una pregunta de examen:
Son las distintas agrupaciones de elementos que pueden realizarse de modo que cada una de ellas difiera de las restantes en alguno de los elementos que la componen
{"Lat":16.3833911236084,"Lng":-97.55859375}
Respuesta
1
Tenemos los siguientes clases de conjuntos:
Conjunto Finito:
Cuando los miembros o elementos del conjunto se pueden contar o enumerar.
Por ejemplo el conjunto de las letras del alfabeto es un conjunto finito que expresado por comprensión es:
A = {x/x son las letras del alfabeto castellano}
Conjunto Infinito:
Cuando los elementos o miembros no se pueden enumerar o contar, se considera como conjunto infinito.
Un ejemplo de conjunto infinito son las estrellas del cielo. Los conjuntos infinitos siempre deberán determinarse por comprensión; para el ejemplo:
B = {x/x son las estrellas del universo}
Conjunto Unitario:
Es el conjunto que tiene un solo miembro o elemento. Un ejemplo:
C = {luna}
Conjunto Vacío:
Se trata del conjunto que no tiene elementos, o que estos son inexistentes, ejemplos:
D = {x/x son perros con alas}
E = { }
Se considera el conjunto vacío de subconjunto de cualquier conjunto.
Conjunto Universal o Referencial:
Se llama así al conjunto conformado por los miembros o elementos de todos los elementos que hacen parte de la caracterización.
Por ejemplo, dados:
A = {1, 3, 5, 7}        B = {2, 3, 4}        C = { 6, 7, 8, 9}
El conjunto universal o referencial es:
U ={1, 2, 3, 4, 5, 6, 7, 8, 9}
Conjuntos disyuntos o disjuntos
Son aquellos conjuntos que no tienen ningún miembro o elemento en común. Otra forma de expresarlos es decir que la intersección de dos o más conjuntos disyuntos o disjuntos es el conjunto vacío
Por ejemplo los conjuntos B y C mencionados como ejemplos del conjunto universal son conjuntos disyuntos pues no tienen ningún miembro en común
Conjuntos equivalentes
Corresponde a los conjuntos con el mismo número cardinal, es decir cuando tienen la misma cantidad de elementos. Por ejemplo:
A = {a, b, c, d}
B = {1, a, I, alpha}
Por lo tanto A y B son conjuntos equivalentes
Conjuntos iguales
Cuando los conjuntos contienen los mismos elementos, estos conjuntos son iguales:
A = { 2, 4, 6, 8, 10}
B = { 4, 10, 2, 8, 6}
A y B son iguales porque contienen los mismos elementos. Es bueno anotar que en un conjunto no importa el orden en que se ubiquen, por eso el conjunto B es igual que el A
Conjuntos homogéneos
Cuando sus miembros o elementos que lo componen, pertenecen al mismo tipo o género. Por ejemplo un conjunto compuesto por letras únicamente, o por números, etc.
A = { a, l, m, p, r }
El conjunto es homogéneo pues todos sus miembros son letras.
Conjuntos heterogéneos
Son aquellos conjuntos compuestos por miembros de difefentes tipos, clases, géneros, etc.
B = { 1, a, prado, rojo}
Conjuntos congruentes
Dos conjuntos numéricos son congruentes cuando sus respectivos miembros se pueden poner en correspondencia uno a uno, de manera que la distancia entre ellos se mantenga:
A = {2, 4, 6, 8, 10}
B = {7, 9, 11, 13, 15}
Así:
2  y 7;  4 y 9;  6 y 11;  8 y 13; 10 y 15 tienen todos ellos como distancia entre ellos 5
Conjuntos no congruentes
Cuando entre dos conjuntos no se puede dar una correspondencia entre los miembros de los conjuntos, de manera que la distancia entre ellos no sea constante, los conjuntos se consideran no congruentes.
Conjuntos subconjuntos:
Un conjunto es subconjunto de otro si todos los elementos de un conjunto también pertenecen al otro.
Si se tienen los siguientes conjuntos:
P = { a, e, i, o, u }                 y                    R = { a, i } 
R es subconjunto de P porque todos los elementos de R están en P.
Conjunto potencia de un conjunto:
Un conjunto potencia es el conjunto de todos los subconjuntos de un conjunto.
Si haces una lista de todos los subconjuntos de S={a,b,c} tendrás el conjunto potencia de {a,b,c}:
P(S) = { {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }
#P(S)=2^3 = 8  
Esos son las clases de conjuntos
Pero tu pregunta es saber que conjunto es lo que expresa ese concepto, pues la respuesta es conjunto potencia
Aunque es extraño. Creo que esto haz preguntado como permutacion y combinación, según busque en google, tu lo haz preguntado como eso, es extraño
this is all espero haberte ayudado

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas