$$\begin{align}& \end{align}$$
Si, eso suponía pero lo que pone es falso, voy a poner las derivadas verdaderas porque no han acertado ninguna.
$$\begin{align}&a)\\&\\&\frac{\partial x} {\partial r}=\cos\theta\implies \frac{\partial r} {\partial x}=\frac{1}{\cos\theta}\\&\\& \frac{\partial y} {\partial r}=sen\,\theta\implies \frac{\partial r} {\partial y}=\frac{1}{sen\,\theta}\\&\\&\frac{\partial x}{\partial \theta}=-r\;sen\, \theta\implies \frac{\partial \theta}{\partial x}=-\frac{1}{r\;sen\, \theta}\\&\\&\frac{\partial y}{\partial \theta}=r\,\cos \theta\implies \frac{\partial \theta}{\partial x}=\frac{1}{r\;\cos \theta}\\&\\&\\&\\&b)\\&\\&\frac{\partial w}{\partial x}=\frac{\partial w}{\partial r}·\frac{\partial r}{\partial x}=\frac{\partial w}{\partial r}·\frac{1}{\cos \theta}\\&\\&\frac{\partial w}{\partial y}=\frac{\partial w}{\partial r}·\frac{\partial r}{\partial y}=-\frac{\partial w}{\partial r}·\frac{1}{sen \theta}\\&\\&\\&c)\\&\\&\frac{\partial ^2w}{\partial x^2}=\frac{\partial \left(\frac{\partial w}{\partial r}·\frac{1}{\cos \theta}\right)}{\partial x}=\frac{\partial \left(\frac{\partial w}{\partial r}·\frac{1}{\cos \theta}\right)}{\partial r}·\frac{\partial r}{\partial x}=\\&\\&\left(\frac{\partial ^2w}{\partial r^2}·\frac{1}{\cos\theta}+\frac{\partial w}{\partial r}·\frac{sen\, \theta}{\cos^2 \theta}·\frac{\partial\theta}{\partial r}\right)·\frac{1}{\cos \theta}\\&\\&\\&\\&\frac{\partial ^2w}{\partial y^2}=\frac{\partial \left(\frac{-\partial w}{\partial r}·\frac{1}{sen \theta}\right)}{\partial y}=\frac{\partial \left(\frac{-\partial w}{\partial r}·\frac{1}{sen \theta}\right)}{\partial r}·\frac{\partial r}{\partial y}=\\&\\&\left(\frac{-\partial ^2w}{\partial r^2}·\frac{1}{sen\theta}-\frac{\partial w}{\partial r}·\frac{-\cos\, \theta}{sen^2 \theta}·\frac{\partial\theta}{\partial r}\right)·\frac{1}{sen \theta}\\&\end{align}$$
Y voy a dejarlo aquí porque la suma no se va a parecer nada a lo que dicen. Yo no sé de dónde han podido sacar este ejercicio tan mal y tan malo.