$$\begin{align}&\text{Usamos la fórmula}\\&\\&(fg)'= f'g+fg'\\&\\&c)\quad \frac{d^2}{dx^2}\left(e^{3x}sen \,2x \right)\\&\\&\frac{d}{dx}\left(e^{3x}sen \,2x \right)= 3e^{3x}sen2x+e^{3x}\cos 2x·2=\\&\\&e^{3x}(3sen\,2x+2cos 2x)\\&\\&\\&\frac{d^2}{dx^2}\left(e^{3x}sen \,2x \right)=\frac{d}{dx}\left(e^{3x}(3sen\,2x+2cos 2x) \right)=\\&\\&3e^x(3sen\,2x+2 \cos 2x)+e^{3x}(6 \cos 2x-4sen\, 2x)=\\&\\&e^{3x}(9sen \,2x+ 6 \cos 2x+ 6 \cos 2x - 4 sen\,2x)\\&\\&e^{3x}( 12 \cos 2x +5sen \,2x)\\&\\&\\&----------------------\\&\\&\frac{d^3}{dx^3}(x^7+2x^6-5x^4+8x^3-2x+2)\\&\\&\text{No pondré la función para ahorrar sitio}\\&\\&\frac{df(x)}{dx}=7x^6+12x^5-20x^3+24x^2-2\\&\\&\frac{d^2f(x)}{dx^2}=42x^5+60x^4-60x^2+48x\\&\\&\frac{d^3f(x)}{dx^3}=210x^4+240x^3-120x +48\\&\end{align}$$
:
: