Cómo sacar la derivada y su función
1. Lee con atención la siguiente situación:
Supongamos que el costo de la producción en pesos de x toneladas de jitomate está dada por la siguiente función c (x) = 5x2 + 3x. Es decir, para producir 1,200 toneladas de jitomate se necesitan c (1,200) = 5 (1,200)2 + 3(1,200) = 7,203,600 (siete millones doscientos tres mil seiscientos pesos). Si queremos saber cuánto se deberá pagar si se incrementa la producción a 30 toneladas más, hay que derivar la ecuación de la producción total y así obtener el costo del incremento de la producción. Para ello, se puede realizar el siguiente proceso:
Se deriva la función del costo de producción
c(x)= 5x2+3x
Para derivarla se utiliza la siguiente fórmula, que es para realizar una derivada de un polinomio:
El resultado o la derivada de la función de producción total es:
2. A partir de lo anterior, responde:
• ¿Cuánto deberá pagarse por aumentar a 30 toneladas la producción, es decir, por producir 1,230 toneladas de jitomate?
• En esta situación ¿para qué se aplicó la derivada de la función de producción total?
profesor tengo una duda, como puedo sacar el calculo del precio nuevo para restarle el viejo. gracias - liriel lion
Simplemente evalúas la función en 1230. C(1230)=5·(1230)^2 + 3·1230 = 7568190. Con ello puedes calcular el incremento exacto 7568190-7203600=364590 que no es el mismo de la respuesta porque la respuesta solo es una aproximación - Valero Angel Serrano Mercadal