No sé cuanto te dio de manera 'normal', pero veamos...
$$\begin{align}&\Delta x = \frac{0 - (-2)}{n}=\frac{2}{n}\\&x_i = a + i \cdot \Delta x = -2 + \frac{2i}n\\&S = \sum_{i=0}^{n-1}f(x_i) \cdot \Delta x=\\&\sum_{i=0}^{n-1}2((-2 + \frac{2i}n)+3)^3 \cdot \frac{2}n=\\&\frac{4}{n} \Bigg(\sum_{i=0}^{n-1}(\frac{2i}n+1)^3 \Bigg)=\\&\frac{4}{n} \Bigg(\sum_{i=0}^{n-1}(\frac{2i}n)^3+3(\frac{2i}n)^2\cdot 1+ 3(\frac{2i}n)\cdot 1^2+1^3 \Bigg)=\\&\frac{4}{n} \Bigg(\sum_{i=0}^{n-1}\frac{8i^3}{n^3}+\frac{12i^2}{n^2}+ \frac{6i}n+1 \Bigg)=\\&\frac{4}{n} \Bigg(\sum_{i=0}^{n-1}\frac{8i^3}{n^3}+\sum_{i=0}^{n-1}\frac{12i^2}{n^2}+\sum_{i=0}^{n-1} \frac{6i}n+\sum_{i=0}^{n-1}1 \Bigg)=\\&\frac{4}{n} \Bigg(\frac{8}{n^3}\sum_{i=0}^{n-1}i^3+\frac{12}{n^2}\sum_{i=0}^{n-1}i^2+\frac{6}{n}\sum_{i=0}^{n-1} i+\sum_{i=0}^{n-1}1 \Bigg)=\\&\frac{4}{n} \Bigg(\frac{8}{n^3}((\frac{n(n-1)}{2})^2)+\frac{12}{n^2}(\frac{1}{6}(n-1)n(2n-1))+\frac{6}{n}(\frac{n(n-1)}{2})+(n-1) \Bigg)=\\&\frac{4}{n} \Bigg(\frac{2}{n^3}(n^2(n-1)^2)+\frac{2}{n^2}((n-1)n(2n-1))+\frac{3}{n}(n(n-1))+(n-1) \Bigg)=\\&\frac{4}{n} \Bigg(\frac{2(n-1)^2}{n}+\frac{2(n-1)(2n-1)}{n}+3(n-1)+(n-1) \Bigg)=\\&\frac{8}{n} \Bigg(\frac{n^2-2n+1}{n}+\frac{2n^2-3n+1}{n}+2n-2 \Bigg)=\\&8\Bigg(\frac{3n^2-5n+2}{n^2}+2-\frac{2}n \Bigg)\\&\lim_{n \to \infty}8\Bigg(\frac{3n^2-5n+2}{n^2}+2-\frac{2}n \Bigg)=40\end{align}$$
Si calculás la integral, también te da 40...
Salu2