·
·
Usaremos estas dos identidades:
$$\begin{align}&\cos^2x=\frac{1+\cos 2x}{2}\\&\\&sen^2 x = \frac{1-cos2x}{2}\\&\\&\int sen^4x·\cos^2 x\;dx=\\&\\&\int \frac{1-\cos 2x}{2}·\frac{1-\cos 2x}{2}·\frac{1+\cos 2x }{2}dx=\\&\\&\frac 18\int(1-\cos 2x)(1-\cos^2 2x)dx=\\&\\&\frac 18\int(1-\cos^2 2x-\cos 2x+\cos^32x)dx=\\&\\&\frac 18\left(x-\int \frac{1+\cos 4x}{2}dx -\frac{sen 2x}{2}+\int \cos^2 2x·cos2x\; dx\right)=\\&\\&\frac 18\left(x-\frac x2-\frac {sen\,4x}8-\frac{sen 2x}2+\int(1-sen^22x)\cos 2x\;dx\right)\\&\\&\text{dejamos de arrastrarlo todo y hacemos solo la integral final}\\&\\&t=sen\, 2x\\&dt = 2 \cos 2x \;dx\\&\\&\frac 12\int(1-t^2)dt=\frac t2-\frac{t^3}{6}=\frac{sen\, 2x}{2}- \frac{sen^32x}{6}\\&\\&\text{Ahora volvemos a toda la integral}\\&\\&\frac 18\left(x-\frac x2-\frac {sen\,4x}8-\frac{sen 2x}2+\frac{sen\, 2x}{2}-\frac{sen^3 2x}{6}\right)+C=\\&\\&\frac 18\left(\frac x2-\frac {sen\,4x}8-\frac{sen^3 2x}{6}\right)+C=\\&\\&\frac 18\left(\frac{12x-3 sen \,4x-4sen^3 2x}{24} \right)+C =\\&\\&\frac{12x-3 sen \,4x-4sen^3 2x}{192}\\&\\&------------------------\\&\\&\text{Y la integral definida será}\\&\\&\frac{12x-3 sen \,4x-4sen^3 2x}{192}\bigg|_0^{\frac \pi 4}=\frac{3\pi-0-4-0+0+0}{192}=\\&\\&\frac{3\pi-4}{192}\\&\end{align}$$
Y eso es todo, espero que te sirvca y lo hayas enetendido.
Saludos.
:
: