Duda problema sobre tronco de pirámides

En un tronco de cono la medida de la generatriz es el doble de la medida del radio de la base mayor . Si el área lateral es AL=54cm^2 y el área total es AT=78cm^2. ¿Cuál es el volumen del tronco de cono?

Respuesta
1

;)
Hola Jhon Vargas!

Fórmulas del tronco:

$$\begin{align}&V= \frac h 3 (B+b+ \sqrt {Bb})\\&B= \pi R^2\\&b= \pi r^2\\&A_L=54= \pi(R+r)g \Rightarrow 54= \pi(R+r)2R \Rightarrow  R+r= \frac {27}{\pi R} (*)\\&\\&\\&A_T-A_L=B+b \Rightarrow 24 =\pi R^2+\pi r^2 \\&27= \pi R^2+\pi rR\ \ (*)\\&24= \pi R^2+ \pi r^2\\&Restándolas:\\&3= \pi Rr- \pi r^2 \Rightarrow  R=\frac{3 + \pi r^2}{\pi r}\\&Sustituyendo  \ en \ \ (*):R+r= \frac{27}{\pi R}\\&\frac{3 + \pi r^2}{\pi r}+r=\frac{27 \pi r}{\pi (3 + \pi r^2)}\\&\\&\frac{3+ \pi r^2+ \pi r^2}{\pi r}=\frac{27  r}{ (3 + \pi r^2)}\\&\\&(3+2 \pi r^2)(3+ \pi r^2)=27 \pi r^2\\&\\&9+ 3 \pi r^2+6 \pi r^2+2 \pi^2 r^4-27 \pi r^2=0\\&2 \pi^2 r^4-18 \pi ^2 r^2+9=0\\&ecuación \ Bicuadrada ª que Tiene \ dos \ soluciones:\\&\\&r=\sqrt { \frac {3(3- \sqrt 7)}{2 \pi}}=0.411 \Rightarrow R=\frac{3 + \pi r^2}{\pi r}=2.733\\&\\&r=\sqrt { \frac {3(3+\sqrt 7)}{2 \pi}}=1.642 \Rightarrow R=2.22\\&La \ altura \ por \ Pitágoras\\&\\&h= \sqrt{g^2-(R-r)^2}\\& g=2R\end{align}$$

Tengo que dejarlo. Solo falta h y V.

Espero que te sirva

Saludos

;)

;)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas