;)
Hola Cesc!
Sabemos que la tgx i arctgx son funciones inversas. Luego
t
$$\begin{align}&tg(arctg \alpha)=\alpha\\&sea\ \\&\alpha=arctg \frac{x^2}{1+x^2}==>tg(arctg \frac{x^2}{1+x^2})=\frac{x^2}{1+x^2}\\&\\&Conocemos\la \ identidaad:\\&sec^2 \alpha=1+tg^2 \alpha=1+\Bigg(\frac{x^2}{1+x^2}\Bigg)^2=\frac{(1+x^2)^2+x^4}{(1+x^2)^2}=\frac{1 +2x^2+2x^4}{(1+x^2)^2}\\&==>\\&\cos^2 \alpha=\frac{(1+x^2)^2}{1+2x^2+2x^4}\\&==>\\&\cos \alpha=\cos (arc tg \frac{x^2}{1+x^2})=\frac{1+x^2}{\sqrt{1+2x^2+2x^4}}\\&\\&b)Sea\\&\alpha=arctgx\\&tg \alpha=tg(arctgx)=x\\&sec^2 \alpha =1+tg^2 \alpha=1+x^2\\&==> sec \alpha =\sqrt{1+x^2}\\&\\&\cos \alpha=\frac 1 {\sqrt{1+x^2}}\\&==>\\&sen \alpha= tg \alpha·\cos \alpha= x· \frac 1 { \sqrt {1+x^2}}\\&\\&sen(arctgx)= \frac x { \sqrt {1+x^2}}\end{align}$$
Saludos
;)
;)
||*||
;)
;)