Calcular polinomio taylor en x=1

como determino el polinomio en x=1 si log es log neperiano.

f(x) = 2 · log (2x^2 -x)

gracias

Respuesta
1

Hay que usar la formula de Taylor que dice

$$\begin{align}&f(x) = f(a)+f´(a)(x-a)+\frac{f´´(a)}{2!}(x-a)^2+\frac{f´´´(a)}{3!}(x-a)^3+....\\ &\\ &f(1)=2log(2-1)=2log1 = 0\\ &\\ &f´(x)= \frac{8x-2}{2x^2-x}  \quad f´(1) =\frac{6}{1}=6\\ &\\ &\\ &f´´(x) = \frac{8(2x^2-x)-(8x-2)(4x-1)}{(2x^2-x)^2}=\\ &\\ &\\ &\frac{16x^2-8x -32x^2+8x+8x-2}{(2x^2-x)^2}=\\ &\\ &\\ &\frac{-16x^2+8x-2}{(2x^2-x)^2}\\ &\\ &\\ &f´´(1) = \frac{-16+8-2}{1^2}=-10\\ &\\ &\\ &\\ &P(x)= 6(x-1) -5(x-1)^2+...\end{align}$$

Ya se complicaba calcular más términos, la derivada se complicaba.

El polinomio de Taylor no suele simplificarse, se deja tal como está para que se vea que es el polinomio en el punto x=1

Y eso es todo.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas