Determina los valores máximos y mínimos, utilizando el criterio de la primera derivada?

Utiliza el criterio de la primera derivada para determinar los valores máximos y mínimos de la función

$$\begin{align}&y=(x^2-x-1)^2\end{align}$$

Determina también los puntos de inflexión, los intervalos de crecimiento y decrecimiento, así como los de concavidad.

1 Respuesta

Respuesta
2

Haremos la primera derivada y luego la segunda.

$$\begin{align}&y=(x^2-x-1)^2\\&\\&y'=2(x^2-x-1)(2x-1)\\&\\&\text{La segunda la igualaremos a 0}\\&\\&y''= 2\left((2x-1)(2x-1)+2(x^2-x-1)  \right)=\\&\\&2(2x-1)^2+4(x^2-x-1)=\\&\\&8x^2-8x +2+4x^2-4x-4 =\\&\\&12x^2-12x-2 = 0\\&\\&\text{calculamos las raíces}\\&\\&x=\frac{12\pm \sqrt{144+96}}{24}= \frac{12\pm \sqrt {240}}{24}=\\&\\&\frac{12\pm 4 \sqrt {15} }{24}= \frac{3\pm \sqrt{15}}{6}\end{align}$$

Como esas respuestas son muy feas las pondré en decimal para poder escribirlas de forma sencilla

x1 = -0.145497224

x2 = 1.145497224

Tenemos que calcular el signo de la derivada segunda. Como es una parábola con coeficiente director positivo será positiva a los lados y negativa entre las raíces. Si no te sirve este argumento puedes tomar tres puntos de cada intervalo y calculas el valor de la derivada segunda en ellos

(-oo, -0.145497224)  f''(x)>0  ==> f(x) es cóncava hacia arriba

(-0.145497224, 1.145497224)   f''(x) <0  ==> f(x) es cóncava hacia abajo

(1.145497224, oo)  f''(x) >0  ==> f(x) es cóncava hacia arriba

Las palabras cóncava y convexa son inutilizables porque cada país, cada autor, cada libro dicen una cosa distinta. Cóncava hacia arriba es con forma de copa, y cóncava hacia abajo con forma de iglú.

-------

Perdón, enfrascado con la concavidad se me había olvidado lo de máximos, minimos e intervalos de crecimiento y decrecimiento.

La función es

y=(x^2-x-1)^2

Eso significa que es no negativa, luego hallá donde valga 0 tendra mínimos.

Ya vimos que

x1 = -0.145497224

x2 = 1.145497224

eran raíces de x^2-x-1

luego esos dos puntos son mínimos y el valor de la función es 0

El otro punto crítico era 1/2.  Si una función es contibua debe tener un máximo entre dos mínimos, pero por si acaso usamos otro criterio, el valor de la derivada segunda es

y''(1/2) = 12(1/2)^2 - 12(1/2) - 2 = 3-6-2 = -5  luego es un máximo relativo

Y el valor de la función en este máximo es

[(1/2)^2 - 1/2 - 1]^2 = (1/4 - 1/2 - 1)^2 = [(1-2-4)/4]^2 =(-5/4)^2 = 25/16

Luego el máximo es (1/2, 25/16)

Y los intervalos de crecimiento decrecimiento teniendo en cuenta que f es un polinomio de grado 4 con coeficiente director positivo, por lo que empieza descendiendo desde infinito son:

(-oo, -0.145497224)  decreciente

(-0.145497224, 0.5) creciente

(0.5, 1.145497224) decreciente

(1.145497224, +oo) creciente.

Y eso es todo.

No sé si sabrás que se puede valorar Excelente. Porque semejante pedazo respuesta y el trabajo que lleva no creo que merezca una valoración menor.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas