Determina la derivada de la función indicada.

Agradezco mucho pudieran asesorarme para resolver esta pregunta en base a esta información:

La función y = x3 + 9x2  + 26x + 6 representa la relación existente entre la cantidad y el costo de las piezas metálicas producidas por DINFUNSA.  

○Determina la derivada de la función indicada.

2 Respuestas

Respuesta
1

-

-

La derivada que quieres resolver supongo que es la siguiente:

Como regla tenemos que la derivada de la constante 6 es cero, entonces nos queda:

Cuando x este elevada a cualquier exponente, lo que tienes que hacer es multiplicar el exponente por el coeficiente de esta; ya realizado lo anterior el resultado lo colocas en lugar del coeficiente. Después al exponente le restaras una unidad y se hará valida la regla. De manera matemática se expresa así:

Como existen dos casos en los que se presenta esta regla, nos quedaría de la manera siguiente:

El resultado sería:

Si esta respuesta favoreció sus incertidumbres, no olvide valorarla, ya que con ello me brinda apoyo y motivación para proseguir respondiendo preguntas.

Un cordial saludo!

-

-

¡Gracias! 

Son temas que realmente se me complican agradezco mucho su ayuda.

Hola Experto tengo otras dudas con ese mismo ejercicio no se si pudiera apoyarme es con esa misma  función y = x3 + 9x2  + 26x + 6 representa la relación existente entre la cantidad y el costo de las piezas metálicas producidas por DINFUNSA.  

  1. Determina los valores críticos.
  2. Concluye si los valores críticos son máximos o mínimos.

De antemano agradezco todo su apoyo y envío un cordial saludo 

-

-

He desarrollado lo que me señalaste anteriormente, sin embargo prefiero que esperemos a nuestro experto Valero, con el afán de atribuir validez a mis resultados, esto con el motivo de no darte una contestación errónea e influir en tu prospero aprendizaje.

Una disculpa por lo precedente y esperemos a nuestro experto.

-

-

Respuesta
1

·

·

¡Hola Melina!

La derivada es la que te han dicho tienes que aprender ha hacerla directamente, asi como a escribir los exponentes tal como vas a ver, te hará falta con los ordenadores.

y = x^3 + 9x^2  + 26x + 6

y' = 3x^2 + 18x + 26

Los puntos críticos son los que hacen 0 la derivada. En realidad también son aquellos donde la derivada no está definida, pero eso no sucede aquí.

Luego resolvemos la ecuación

3x^2 + 18x + 26=0

$$\begin{align}&x=\frac{-18\pm \sqrt{18^2-4·3·26}}{6}=\\&\\&\frac{-18\pm \sqrt {12}}{6}=\frac{-9\pm \sqrt {3}}{3}=-3\pm \frac{\sqrt 3}{3}\\&\\&\text{Se calcula la derivada segunda para saber si son}\\&\text{máximos o mínimos}\\&\\&y''=6x+18\\&\\&\text{La derivada segunda en el primero es}\\&y'' = -18+2 \sqrt 3+18=2 \sqrt 3\\&\text {como es positiva,  }\;x=-3+ \frac{\sqrt 3}{3} \text{ es un mínimo}\\&\\&\text{Y en el segundo es}\\&y'' = -18-2 \sqrt 3+18=-2 \sqrt 3\\&\text {como es negativa,  }\;x=-3- \frac{\sqrt 3}{3} \text{ es un máximo}\\&\end{align}$$

Y eso es todo, saludos.

·

·

·

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas