¿Como calculo la suma de 5 vectores que parten del centro de un pentagono a cada vertice?

El problema dice asi..

Desde el centro de un pentagono, salen 5 vectores; cada uno llega a un vertice, encontrar la suma de los 5 vectores.

1 Respuesta

Respuesta
1

·

·

¡Hola Saul!

Normalmente el pentágono tendrá un vértice arriba para que abajo esté apoyado sobre la base.

Como la circunferencia tiene 360 grados, para dibujar el pentágono se divide en 5 partes y cada una tendrá 360º / 5 = 72º

Entonces lós ángulos son, el primero 90º-72º=18º, el segundo 90º, el tercero 90º+72º = 162º, luego 162º+72º = 234º y el último 306º

Los pongo en limpio

{18º, 90º, 162º, 234º, 306º}

Los vectores serán

R(cos 18º, sen 18º)

R(cos 90º, sen 90º)

R(cos 162º, sen 162º)

R(cos 234º, sen 234º)

R(cos 306º, sen 306º)

Y el vector suma es

R(cos18º+cos90º+cos162º+cos234º+cos306º,  sen18º+sen90º+sen162º+sen234º+sen306º) =

R(0, 0) = (0,0)

Pues nos da el vector nulo, algo muy lógico por otra parte por las simetrías de los vectores.

:

:

Lo entendí todo, solo que podría resolverlo por componentes rectanguales i, j, k

Pero eso no es ningun problema.

Los vectores serán

R·Cos 18º i + R·sen 18º j

R·Cos 90º i + R·sen 90º j

R·Cos 162º i + R·sen 162º j

R·Cos 234º i + R·sen 234º j

R·Cos 306º i + R·sen 306º j

Y el vector suma es

R(cos18º+cos90º+cos162º+cos234º+cos306º) i +  R(sen18º+sen90º+sen162º+sen234º+sen306º) j =

0i + 0j = 0

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas