¿Con qué tipo de función de distribución de probabilidad de resuelve cada ejercicio?

Lee cada uno de los casos que se presentan e identifica con qué modelo de distribución de probabilidad se resuelve cada uno:

Identifica que función se utiliza en cada uno (función normal, binomial y de Poisson) y explica las razones.

Caso 1: En una empresa de alimentos, la media de accidentes es de 3 por mes. Calcular la probabilidad de:

a) Que no ocurra ningún accidente en un mes.

b) Que como máximo ocurran 2 accidentes en un mes.

c) Que ocurran 30 accidentes en un año.

d) Que ocurran 8 accidentes en un trimestre.

Caso 2: Un estudio ha mostrado que en la colonia “Barranca vieja” el 60% de los hogares tienen al menos dos computadoras. Se elige al azar una muestra de 50 hogares en esa colonia y se pide:

a) ¿Cuál es la probabilidad de que al menos 20 de los citados hogares tengan cuando menos dos computadoras?

b) ¿Cuál es la probabilidad de que entre 35 y 40 hogares tengan cuando menos dos computadoras?

Caso 3: La probabilidad de que un pescador novato, con una caña de pescar, colecte un pescado es de 0,4. Si lo intenta 5 veces, calcula la probabilidad de que pesque al menos 3 veces.

Finalmente menciona las características de cada función y algunas aplicaciones que tienen en distintos ámbitos, social, industrial, deportivo, entre otros.

2 Respuestas

Respuesta
4

;)
Hola ITZEL!

La contesté ALLÍ

Recuerda volver aquí y votar ( y allí)

Saludos

;)

;)

Respuesta
3

·..

·..

¡Hola Itzel!

Esto son tres ejercicios en realidad, haré el primero y cada caso debería ir en una pregunta distinta si los quieres todos.

Es una distribución de Poisson. Se usa principalmente en dos casos:

Cuando se producen sucesos independientes en una determinada cantidad de tiempo y conocemos la media de los que suceden.

Cuando se producen sucesos en una cantidad de superficie, linea o espacio.

Lo importante es que son sucesos independientes, la probabilidad de que sucedan es independiente de la cantidad de sucesos habidos antes.

Tiene un parametro lambda que indica la cantidad de sucesos esperados en el tiempo o superficie que estamos estudiando. Su función de probabilidad es esta:

$$\begin{align}&P(k)=\frac{e^{-\lambda}·\lambda^k}{k!}\\&\\&\text{donde }\lambda \text { es el número esperado de sucesos en el}\\&\text{periodo de tiempo que sometemos a estudio}\\&\\&a)  \text{ El periodo en estudio es un mes, la media es 3}\\&\\&P(0)= \frac{e^{-3}·3^0}{0!}= \frac{e^{-3}·1}{1}=e^{-3}\approx 0.049787068\\&\\&\\&\\&b)  \text{  Sigue siendo un mes y los esperados son 3}\\&\\&\text{ Esa probabilidad es P(0)+P(1)+P(2)}\\&\\&P=\frac{e^{-3}·3^0}{0!}+\frac{e^{-3}·3}{1!}+\frac{e^{-3}·3^2}{2!}=\\&\\&e^{-3}\left(1 + 3+\frac 92\right)= \frac {17}2 e^{-3}\approx 0.42319\\&\\&\\&\\&c)  \text{ El periodo es un un año, se esperan 36 accidentes}\\&\\&P(30)=\frac{e^{-36}·36^{30}}{30!}=0.04273794\\&\\&\\&\\&d) \text{ En tres meses se esperan 9 accidentes}\\&\\&P(8)=\frac{e^{-9}·9^8}{8!}= 1067.62709·e^{-9}\approx 0.13175564\end{align}$$

Y eso es todo, sa lu dos.

...

...

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas