Modelo de Thomas Malthus, economista inglés en 1798, y el uso de la antiderivada.

Ahora como la P es la variable dependiente podemos pensarla como solo y = P(t), de esta manera dP = dy y acomodando la ecuación anterior en términos de y nos resulta:

dy = kydt

Tenemos una igualdad entre dos diferenciales, para que cada lado tenga las mismas variables pasamos la y del lado derecho al lado izquierdo:

En este punto la ecuación está en forma de diferenciales y cada uno de los lados de la igualdad está en términos de una sola variable, para obtener las respectivas funciones que tienen esos diferenciales es necesario obtener su antiderivada. Integra las funciones en cada lado de la igualdad para hallar la solución de la ecuación diferencial, no olvides la constante de integración, será muy importante, es decir, calcula:

Una vez que tengas las respectivas antiderivadas en la identidad despeja la variable y para que sea una función en términos de t, debes recordar las propiedades de las funciones necesarias. Tu proceso debe conducir a esta ecuación que es el modelo de Malthus:

y=Cekt

Donde la variable y representa la tasa de crecimiento de la población.

2. Desarrollo. Con la aplicación de la antiderivada del modelo de Malthus ahora sigue el planteamiento y resuelve lo que se indica.

Suponiendo que la población inicial que se está considerando es de 100 individuos determina el valor de C. Si tenemos que k=0.5, y con la ecuación se estima el tamaño de la población dentro de 10 años. Bosqueja una gráfica a mano.

Para su presentación, expón todo el proceso en un archivo de procesador de textos e inserta la imagen de la gráfica.

Respuesta
4

·

·

¡Hola Merii!

Ya he contestado otra vez esa pregunta, te facilito el enlace a la respuesta que di: Población modelo Malthus

No olvides que después de ver la respuesta debes volver aquí para valorar la respuesta pinchando en el botón "EXCELENTE" que verás aquí abajo.

Sa lu dos.

:

:

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas