Resolución de las siguientes derivadas.

A) Y=log_2(e^x+2)

B) y=cos^2(3x+1)

C)y=raiz cubica de (-2x-3)^2

1 Respuesta

Respuesta
1

d/dx(Y) = d/dx(log(2, e^x+2))
Reescribir expresión: d/dx(Y) = d/dx(Y):
d/dx(Y) = d/dx((log(2+e^x))/(log(2)))
0 = d/dx((log(2+e^x))/(log(2)))
Factorizar constantes:
0 = (d/dx(log(2+e^x)))/(log(2))
Usando la regla de la cadena, d/dx(log(e^x+2)) = ( dlog(u))/( du) 0, donde u = e^x+2 y ( d)/( du)(log(u)) = 1/u:
0 = (d/dx(2+e^x))/(2+e^x)/(log(2))
Simplificar:
0 = (d/dx(2+e^x))/((2+e^x) log(2))
Diferenciar el término suma por término
0 = d/dx(2)+d/dx(e^x) 1/((2+e^x) log(2))
0 = (d/dx(e^x)+0)/((2+e^x) log(2))
Simplificr:
0 = (d/dx(e^x))/((2+e^x) log(2))
0 = e^x 1/((2+e^x) log(2))

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas