·
·
¡Hola Camila!
Reduciremos el binomio a un monomio mediante un cambio para ver si sale algo.
$$\begin{align}&\int x^2(4-x^2)^{-5/2}dx=\\&\\&x=2\, sen\,t\implies t = arcsen \frac x2\\&dx= 2 \cos t\\&\\&=\int 4sen^2t(4-4sen^2t)^{-5/2}·2 \cos t\;dt=\\&\\&8·\int sen^2t· [4(1-sen^2t)]^{-5/2}cost\;dt=\\&\\&8\int sen^2 t· (4cos^2t)^{-5/2}\cos t \;dt=\\&\\&8\int sen^2 t· (2^2cos^2t)^{-5/2}\cos t \;dt=\\&\\&8\int sen^2t· (2 \cos t)^{-5}cost dt=\\&\\&8·2^{-5}\int \frac{sen^2t}{\cos^4 t}dt=\frac 14 \int \frac{sen^2t}{\cos^2t}·\frac{1}{\cos^2t}dt\\&\\&\frac 14 \int tg^2t·sec^2t·dt\\&\\&u=tg \;t\\&du=sec^2t\;dt\\&\\&=\frac 14 \int u^2du= \frac 1{12}u^3+C=\\&\\&\frac 1{12}tg^3t +C=\\&\\&\frac 1{12}tg^3\left(arsen \frac x2\right)+C=\\&\\&\frac 1{12} tg^3\left(arctg \frac{\frac x2}{\sqrt{1-\frac{x^2}{4}}} \right)+C=\\&\\&\frac 1{12}\left(\frac{\frac x2}{\sqrt{1-\frac{x^2}{4}}} \right)^3+C=\\&\\&\frac 1{12} \left(\frac{x}{\sqrt{4-x^2}} \right)^3+C=\\&\\&\frac{x^3}{12 \sqrt{(4-x^2)^3}}+C\end{align}$$
Y eso es todo sa lu dos.
:
: