Encuentre la ecuación de la hipérbola que satisface que el centro es (-2,2), un vértice es (4,2), y un foco es (6,2)

Geometría

Encuentre la ecuación de la hipérbola que satisface que el centro es (-2,2), un vértice es (4,2), y un foco es (6,2). Dibuje la gráfica de la hipérbola encontrada.

1 Respuesta

Respuesta
1

;)
Hola Ume Lee!
De las coordenadas del centro, vértice y foco, todas tienen y=2, sabemos que es una hipérbola de eje principal o focal en la recta y=2. Luego es una hipérbola horizontal , desplazada (centro=(-2,2))

La ecuación es tipo:

$$\begin{align}&\frac{(x+2)^2}{a^2}- \frac{(y-2)^2}{b^2}=1\\&\\&a=semieje\ mayor=\overline{VC}=4-(-2)=6\\&\\&c=semidistánciaº focal= \overline{FC}=6-(-2)=8\\&\\&\frac{(x+2)^2}{6^2}- \frac{(y-2)^2}{8^2}=1\end{align}$$

Saludos

;)

;)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas