Promedios: media aritmética, media geométrica y armónica

Las medias aritméticas, geométrica y armónica de dos números enteros positivos distintos son números enteros. Hallar el menor valor posible de la media aritmética

1 respuesta

Respuesta
1

Veamos que tenemos y si podemos llegar a algo...

$$\begin{align}&\text{Sean x, y los números, tales que x < y}\\&Armonica: \frac{2}{\frac{1}{x}+\frac{1}{y}}......(a)\\&Geométrica: \sqrt{x\cdot y}.......(b)\\&Aritmética: \frac{x+y}{2}.......(c)\\&\text{De la condición (b), tenemos que xy debe ser un cuadrado}\\&\text{De la condición (c), tenemos que x+y debe ser par}\\&\text{De la condición (b) los números pueden ser x=1, y = a}^2 \ o\\&x\ne1 \land y=x\cdot a^2..............a \in Z\end{align}$$

Probé la opción x=1 en un Excel y no encontré ningún valor de y hasta 25921 (se va aproximando a la solución, pero no lo es)

Empecé a variar los valores de x, ejemplo x = 2, y = 8, y = 18, y = 32, etc (recordá que si x no es 1, entonces el valor de y debe ser un cuadrado multiplicado por x -para que el número completo sea un cuadrado)

Haciendo estas pruebas, encontré la primer solución para

x = 10, y = 40, que tiene las siguientes medias

Armónica: 16

Geométrica: 20

Aritmética: 25... este es el valor buscado

Salu2

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas