$$\begin{align}&s'(t) = 2t -2\\&|| s'(t)|| = \sqrt{1+(2t-2)^2}\\&\end{align}$$
No es necesario simplificar, no va a ayudar mucho, al menos en este caso en concreto
$$\begin{align}&\int_{0}^5 \sqrt{(2t-2)^2 +1} \,dt\\&\text{No es una integral sencilla, hay que hacer varias cosas}\\&u = 2t-2\\&du = 2dt\\&= \frac{1}{2} \int_{-2}^8 \sqrt{u^2+1} \,du\\&u = tan(x)\\&du = \sec^2(x)dx\\&\text{Aca no cambiare los limites de integracion, van a quedar algo feos}\\&\text{resolvere la integral indefinida y la regresare en terminos de u}\\&= \frac{1}{2} \int sec^2(x) \sqrt{\tan^2(x)+1} \,dx= \frac{1}{2} \int \sec^3(x) \,dx= \frac{1}{2} \int \sec^2(x)\sec(x) \,dx\\&\text{Haciendo integracion por partes}\\&u = \sec(x)\\&du = \sec(x) \tan(x) dx\\&dv = \sec^2(x) dx\\&v = tan(x)\\& \frac{1}{2} \int \sec^3(x) \,dx= \frac{1}{2} \bigg[ \sec(x) \tan(x) - \int \sec(x) \tan^2(x) \,dx \bigg]\\& \frac{1}{2} \int \sec^3(x) \,dx=\frac{1}{2} \bigg[ \sec(x) \tan(x) - \int \sec(x)(\sec^2(x)- 1) \,dx \bigg]\\& \frac{1}{2} \int \sec^3(x) \,dx = \frac{1}{2} \bigg[ \sec(x) \tan(x) - \int \sec^3(x)\,dx + \int \sec(x) \,dx \bigg]\\&\int \sec^3(x) \,dx = \frac{1}{2} \bigg[ \sec(x) \tan(x) + \int \sec(x) \,dx \bigg]\\&\int \sec^3(x) \,dx = \frac{1}{2} \bigg[ \sec(x) \tan(x) + \int \sec(x) \frac{\sec(x) +tan(x)}{\sec(x) +tan(x)}\,dx \bigg]\\&\int \sec^3(x) \,dx = \frac{1}{2} \bigg[ \sec(x) \tan(x) + \ln \bigg|\sec(x) +\tan(x)\bigg| \bigg]\\&\text{Sustituyendo arriba}\\&\int_{0}^5 \sqrt{(2t-2)^2 +1} \,dt=\frac{1}{2} \int_{-2}^8 \sqrt{u^2+1} \,du = \frac{1}{2}\int \sec^3(x) \,dx = \frac{1}{4} \bigg[ \sec(x) \tan(x) + \ln \bigg|\sec(x) +\tan(x)\bigg| \bigg]\\&\int_{0}^5 \sqrt{(2t-2)^2 +1} \,dt=\frac{1}{2} \int_{-2}^8 \sqrt{u^2+1} \,du = \frac{1}{4} \bigg[ \sec(\arctan(u))\tan(\arctan(u))+ \ln \bigg|\sec(\arctan(u)) +\tan(\arctan(u))\bigg| \bigg]_{-2}^8\\&\text{Con un poco de trigonometria, se simplifica a}\\&\int_{0}^5 \sqrt{(2t-2)^2 +1} \,dt =\frac{1}{2} \int_{-2}^8 \sqrt{u^2+1} \,du =\frac{1}{4} \bigg[ u \sqrt{1+u^2}+ \ln|\sqrt{1+u^2} +u | \bigg]_{-2}^8\\&\int_{0}^5 \sqrt{(2t-2)^2 +1} \,dt = \frac{1}{4}\bigg [8 \sqrt{65} + \ln \frac{8+ \sqrt{65}}{\sqrt{5}-2} +2 \sqrt{5} \bigg]\end{align}$$
Bueno, es complicada, pero con operaciones que supongo que habras visto, he comprobado el resultado con matlab, es correcto.