Aquí el lick de la solución:
http://imageshack.us/photo/my-images/854/volumenelipsoide.jpg/1-El jacobiano se calcula así, por derivadas parciales, si derivas lo que indica, así se obtiene solo a, luego b, y c
2-Para que se integre triplemente, esa es la forma de integrar(estructura), por haber hecho el cambio de variable
3-La transformación en coordenadas esféricas, es así, si elevas al cuadrado a cada ecuación y luego las sumas, veras que al sumar esos cuadrados obtienes el radio, el cual es 1
4-Nuevamente se calcula el jacobiano para este caso, es distinto en los valores y su calculo es escribir un poco, boring
5-Cuando se transforma a coordenadas esféricas, el gráfico es así, ahí se indica que, como ejemplo, una hoja de papel, considerar plano por y, entonces al atravesarlo con un lapicero, se genera el eje z, entonces es como si el lapicero estuviera partido a la mitad, po ahí esta lo que hice, por tal motivo duplico la nueva integral triple, porque solo así como esta se calcularía su mitad del volumen más no el total, y como es simétrico, solo basta multiplicar por 2
6-Phi, va desde el plano xy hasta el ejez, es decri desde cero hasta 90º=pi/2radian ;el radio po es obvio desde cero hasta 1, theta va en rotación, por lo tanto desde 0 a 2pi radian
7-De pasar a du dv dw a dphi dr d theta,solo basta derivar las igualdades :u=r*senphi *costheta,....................;asi al reemplazar ,solo quedara dphi dr dtheta
8-La nueva integral triple formada, posee esa estructura, solo queda calcularla, eso es fácil, como se sabe se agrupa una a una, y así se va desarrollando, manteniendo constante lo que no indique la diferencial:si integramos phi, solo integrar lo que posea a phi;r o theta quedan como constantes(un simple numero).. blah blah
This is all,good luck,puntua y finaliza