Problema de matemática 6º grado primaria

De los 5 ejercicios que dio la maestra, los chicos pueden elegir 3. ¿de cuantas formas distintas puede quedar conformada la tarea? ¿y si tuvieran que elegir 4?

1 respuesta

Respuesta
1

Es un ejemplo de combinaciones, ya que da lo mismo el orden en que pongamos los ejercicios, los mismos ejercicios en distinto orden son la misma tarea.

Luego son combinaciones de 5 elementos tomados de tres en tres. La forma de calcularlas es

C(5,3) = 5·4·3 / (3·2·1) = 60/6 = 10

la fórmula es

C(m,n) = m(m-1)(m-2)···(m-n+1) / n!

el numerador tiene n factores decrecientes.

Y si se tuvieran que elegir 4 serían

C(5,4) = 5·4·3·2 / (4·3·2·1) = 120 / 24 = 5

En este caso es más sencillo calcularlo sabiendo que

C(m,n) = C(m, m-n)

con lo cual

C(5,4) = C(5, 5-4) = C(5,1) = 5/1 = 5

Y eso es todo.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas