Gerardo 3090!
$$\begin{align}&e)\;f(x)= \frac{x^2 \sqrt{3x-2}}{(x-5)^2}\\ &\\ &\\ &f´(x)=\frac{\left(2x \sqrt{3x-2}+\frac{3x^2}{2 \sqrt{3x-2}}\right)(x-5)^2-x^2 \sqrt{3x-2}·2(x-5)}{(x-5)^4}=\\ &\\ &\\ &\frac{\left(\frac{4x(3x-2)+3x^2}{2 \sqrt{3x-2}}\right)(x-5)-2x^2 \sqrt{3x-2}}{(x-5)^3}=\\ &\\ &\\ &\frac{(15x^2-8x)(x-5)-4x^2 (3x-2)}{2 \sqrt{3x-2}(x-5)^3}=\\ &\\ &\\ &\frac{15x^3-75x^2-8x^2+40x-12x^3+8x^2}{2 \sqrt{3x-2}(x-5)^3}=\\ &\\ &\\ &\frac{3x^3-75x^2+40x}{2 \sqrt{3x-2}(x-5)^3}\end{align}$$
$$\begin{align}&g) f(x) =arctg (\sqrt{3^x+2})\\ &\\ &f´(x)= \frac{3^xln\,3}{2 \sqrt{3^x+2}}·\frac{1}{1+3^x+2}=\\ &\\ &\\ &\frac{3^xln\, 3}{2(3+3^x) \sqrt{3^x+2}}\end{align}$$
$$\begin{align}&j) f(x) = cosh(x^2+ln\,x)\\ &\\ &f'(x) = sinh(x^2+lnx)·\left(2x+\frac 1x\right)\end{align}$$
Y eso es todo.