$$\begin{align}& \displaystyle\lim_{b \rightarrow \infty}\frac{1}{2}(arctg(b)(b^2+1)-b)\\ & \frac{1}{2}\displaystyle\lim_{b \rightarrow \infty}(arctg(b)(b^2+1)-b)=\infty\end{align}$$
$$\begin{align}&\int_{0}^{\infty}{{xarctg(x)dx}}\\ &\displaystyle\lim_{b \rightarrow \infty} \int_{0}^{b}{{xarctg(x)dx}}\\ &\\ &\end{align}$$
Primero debemos resolver la integral, para aplicar luego el limite.
$$\begin{align}&\int_{0}^{b}{{xarctg(x)dx}}\\ &\\ &u=arctg(x)--> du=\frac{1}{x^2+1}dx\\ &dv=xdx-->v=\frac{x^2}{2}\\ &\\ &\int{udv}=uv-\int{vdu}\\ &\int_{0}^{b}{{xarctg(x)dx}}=arctg(x)\frac{x^2}{2}-\int{\frac{x^2}{2}\frac{1}{x^2+1}dx}\\ &=arctg(x)\frac{x^2}{2}-\frac{1}{2}\int{\frac{x^2}{x^2+1}}dx\\ &=arctg(x)\frac{x^2}{2}-\frac{1}{2}\int{(1-\frac{1}{x^2+1})}dx\\ &=arctg(x)\frac{x^2}{2}-\frac{1}{2}(\int{dx}-\int{\frac{dx}{x^2+1})}\\ &=arctg(x)\frac{x^2}{2}-\frac{1}{2}(x-arctg(x))\\ &=\frac{1}{2}(x^2arctg(x)-x+arctg(x))\\ &=\frac{1}{2}(arctg(x)(x^2+1)-x)\\ &\\ &\end{align}$$
Evaluamos entre 0 y b, la integral definida.
$$\begin{align}&=\frac{1}{2}(arctg(b)(b^2+1)-b)-(\frac{1}{2}(arctg(0)(0^2+1)-0)\\ &=\frac{1}{2}(arctg(b)(b^2+1)-b)-(0)\\ &=\frac{1}{2}(arctg(b)(b^2+1)-b)\end{align}$$
Aplicamos el limite para ver la convergencia o divergencia.
$$\begin{align}& \displaystyle\lim_{b \rightarrow \infty} \end{align}$$
Aunque arcotangente de infinito es pi/2, el resto sigue dando infinito por lo tanto el limite completo da infinito entonces la integral impropia diverge.