Ok, efectivamente te están dando I'(t) y C'(t)
Lo primero que voy a calcular es I(t), C(t) y U(t) (que es U(t)=I(t)-C(t))
$$\begin{align}&I'(t) = 14-t^{1/2}\\&I(t) = \int(14-t^{1/2})\;dt = 14t-{t^{3/2}\over{3\over2}}+K_1\\&I(t) = 14t-{2t^{3/2}\over3}+K_1\\&\\&C'(t) = 2+3t^{1/2}\\&C(t) = \int(2+3t^{1/2})\;dt = 2t+{3t^{3/2}\over{3\over2}}+K_2\\&C(t) = 2t+2t^{3/2}+K_2\\&\end{align}$$
Como no te dicen nada de las constantes de integración, voy a asumier que ambas son cero, luego
$$\begin{align}&I(t) = 14t-{2t^{3/2}\over3}\\&C(t) = 2t+2t^{3/2}\\&U(t) = I(t)-C(t) = (14t-{2t^{3/2}\over3})-(2t+2t^{3/2})\\&U(t) = 12t -{8t^{3/2}\over3}\\&\end{align}$$
a. Seguirá siendo rentable mientras U(t) > 0; luego dejará de serlo cuando U(t)=0
$$\begin{align}&U(t) = 0=12t -{8t^{3/2}\over3}\\&12t = {8t^{3/2}\over3}\\&24t = 8t^{3/2}\\&3t = t^{3/2}\\&0 = t^{3/2}-3t\\&0=t(t^{1/2}-3)\\&Luego, t=0 \lor (t^{1/2}-3)=0 \rightarrow t^{1/2}=3 \rightarrow t = 9\\&\\&\\&\end{align}$$
o sea que la respuesta es t = 9 años
b. La utilidad acumulada la podés calcular integrando U(t) entre 0 y 9; o sea
$$\begin{align}&\int_{0}^{9}(12t -{8t^{3/2}\over3})\;dt=\\&({12t^2 \over 2} - {8 \over 3}{t^{5/2}\over {5\over2}}) \Big ]_{0}^{9} = \\&(6t^2 - {16 \over 15}{t^{5/2}}) \Big ]_{0}^{9} = \\&(6(9)^2 - {16 \over 15}{(9)^{5/2}}) -(0) = 226.8\\&\\&\\&\end{align}$$