Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16m abajo del

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

Un gran tanque de almacenamiento, abierto en la parte superior y lleno con agua, en su costado en un punto a 16 m abajo del nivel de agua se elabora un orificio pequeño. La relación de flujo a causa de la fuga es de 2.50 x 10-3 m3/min. Determine a) la rapidez a la que el agua sale del orificio y b) el diámetro del orificio.

1 respuesta

Respuesta

Aquí es de aplicación el teorema de Bernoulli. Tienes que considerar que tanto las presiones a nivel agua del tanque y orificio de perdida son iguales y además que la diferencia de cotas Z2 - Z1 = CONSTANTE = 16 metros.

El teorema ( que es otro ejemplo de conservación de energía) te dice que al circular el agua hacia abajo:

Energía potencial del fluido del tanque = energía cinética de salida del agua a través del orificio.

Patm / ro x g  +  altura = Patm / ro x g  + V^2 / 2g ......V = ^2 = 2gh

V^2 = VELOCIDAD DE SALIDA POR EL ORIFICIO^2 = 2 X 9.80 X 16 =   313.60 m/seg^2 ....................................V= 17.70 m/seg.

Gasto = 2.50 x 10-3 m3/min.=  velocidad x seccion = 17.70 m/seg x Seccion.

Sección de salida = 2.50 x 10-3 m3/min. / 17.70 m/seg 

Haciendo las reducciones necesarias...

Secc.salida= (2.50 x 10-3 m^3 / 60 seg.) / 17.70 m/seg. = 2.354 x 10^-6 m^2 .......lo que lleva a .......(diámetro del orificio)^2 =  2.354 x 10^-6 x 4 / 3.14 = 3 x 10^-6 m^2 .........................diametro del orificio= 1.731 x 10^-3 metros. ( 1 mm. y cuarto aprox.)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas