·
·
¡Hola Nancita!
Hace falta saber cuál es el denominador principal, no es lo mismo
$$\begin{align}&\frac{\frac{\left(\frac 23\right)^{-3}}{\left(\frac{9}{4} \right)^5}}{\left(\frac{2}{3} \right)^{-10}}=\frac{\left(\frac 23\right)^{-3}}{\left(\frac{9}{4} \right)^5·\left(\frac 23\right)^{-10}}= \frac{\left(\frac 23\right)^{-3-(-10)}}{\left(\frac{9}{4} \right)^5}=\\&\\& \\&\frac{\left(\frac 23\right)^{7}}{\left(\frac{9}{4} \right)^5}=\frac{\left(\frac 23\right)^{7}}{\left(\frac{3}{2} \right)^{10}}=\frac{\left(\frac 23\right)^{7}}{\left(\frac{2}{3} \right)^{-10}}=\left(\frac{2}{3}\right)^{7-(-10)}=\left(\frac{2}{3}\right)^{17}\\&\\&que\\&\\&\\&\frac{\left(\frac 23\right)^{-3}}{\frac{\left(\frac{9}{4} \right)^5}{\left(\frac{2}{3} \right)^{-10}}}=\frac{\left(\frac 23\right)^{-3}·{\left(\frac{2}{3} \right)^{-10}}}{\left(\frac{9}{4} \right)^5}=\frac{\left(\frac 23\right)^{-13}}{\left(\frac{9}{4} \right)^5}=\frac{\left(\frac 23\right)^{-13}}{\left(\frac{3}{2} \right)^{10}}=\\&\\&\frac{\left(\frac 23\right)^{-13}}{\left(\frac{2}{3} \right)^{-10}}= \left(\frac{2}{3}\right)^{-13-(-10)}= \left(\frac{2}{3}\right)^{-3}\\&\end{align}$$
Elige la que corresponde con tu ejercicio.
Saludos.
:
: