Un estudio ha mostrado que en la colonia “Barranca vieja” el 60% de los hogares tienen al menos dos computadoras. Se elige al a

¿Cuál es la probabilidad de que al menos 20 de los citados hogares tengan cuando menos dos computadoras?

¿Cuál es la probabilidad de que entre 35 y 40 hogares tengan cuando menos dos computadoras?

2 respuestas

Respuesta
7

· . . ·

------

¡Hola Miriam!

Es una distribución binomial o binómica que es como debería decirse, ya que binomial es un anglicismo. Se aplica en situaciones donde la variable solo puede tomar dos valores. Tiene dos parámetros, el número de veces que se repite el experimento y la probabilidad de exito, por eso se representa como

B(n,p)

Sirve para todo proceso donde solo pueden darse dos casos (éxito o fracaso) y nos interesa saber cuántos éxitos se dan al repetir n veces ese proceso.

La distribución del ejercicio es una B(50, 0.6)

Pero lo que sucede es que en algunas binómicas habría que hacer muchas cuentas y por eso se usa una distribución normal que sirve para aproximar la binómica.

Esta distribución normal tiene estos parámetros:

$$\begin{align}&\mu=np=50·0.6=30\\&\sigma=\sqrt{np(1-p)}= \sqrt{50·0.6·04}=3.4641\\&\\&\text{A esta normal la llamaré X}\\&X\sim N(30,\;3.4641)\\&\\&\text{Debemos calcular la probabilidad de 20 o más}\\&\text{Al pasar de binómica a normal se ajusta con }\\&\pm 0.5\text{ ampliando o disminuyendo el intervalo}\\&\text{segun el extremo pertenezca o no al intervalo}\\&\\&\text{En este caso el intervalo es }[20,50]\\&\text{por pertenecer el 20 la probabilidad a}\\&\text{contabilizar en la normal es }P(X\ge 19.5)\\&\\&P(X\ge 19.5)=1-P(X\le19.5) =\\&\\&\text{tipificando la normal}\\&\\&1- P\left(Z\le \frac{19.5-30}{3.4641}\right)= 1-P(Z\le-3.03109)=\\&\\&1-0.9988 = 0.0012\\&\\&\\&b)  \text{ Supongo que quieren decir ambos inclusive }[35, \;40]\\&\text{Por ello se amplia en intervalo por los dos lados}\\&\\&P(35\le B\le 40) = P(34.5\le X\le40.5)=\\&\\&P(X\le40.5)-P(X\le 34.5) =\\&\\&\text{tipificamos la variable}\\&\\&=P\left(Z\le \frac{40.5-30}{3.4641}  \right)-P\left(Z\le \frac{34.5-30}{3.4641}  \right)=\\&\\&P(Z\le3.031) - P(Z\le 1.299)=\\&\\&0.9988-0.9179=0.0809\\&\end{align}$$

El ejercicio no está muy bien, tendrían que haber puesto una distribución normal per se, no una normal por rebote. Respecto a la normal es la distribución cuantitativa continua más frecuente en los sucesos reales, la variable se concentra en las inmediaciones de la media y cuanto más lejos está de la media es más improbable, eso lo demuestra la forma de campana que tiene, cuanto más lejos de la cúpula más pequeña es la función de densidad.

Es la principal de las variables continuas luego se emplea para todo, incluso reemplaza a otras distribuciones luego casí sería más corto preguntar para qué no se usa.

Por ejemplo: la estutura de los alumnos de una clase, las notas de los exámenes, el coeficiente intelectual, los errores al medir alguna cosa, las expectativas de voto de un partido, etc.

Y eso es todo,  s a l u d o s.

--__--

--__--

Respuesta
4

;)
Hola Miriam Aparicio!

La tienes solucionada en el siguiente enlace

Recuerda regresar aquí y votar (y allí)

Saludos

;)

;)

;)
Hola Miriam!

Creo que tendrías que votar a todos los Expertos.

Excelente te asegurará nuevas respuestas.

Puedes cambiar tu voto aquí abajo

Saludos

;)

;)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas