Un documento en el que investigues sobre los ciclones tropicales en México y que expliques la posibilidad de ocurrencia.

¿Qué hacer?

  1. Investiga sobre el número de ciclones tropicales ocurridos en México de 2009 a 2011 en el Océano Atlántico. Consulta el Análisis de las temporadas de huracanes de los años 2009, 2010 y 2011 en México, publicado por la Secretaría de Medio Ambiente y Recursos Naturales (Semarnat), disponible en (revisa a partir de la página 173): http://www.conagua.gob.mx/CONAGUA07/Publicaciones/Publicaciones/CGSMN-2-12.pdf.
  2. Cuantifica los ciclones tropicales ocurridos entre 2009 y 2011 en el Océano Atlántico. Menciona cuántos ciclones tropicales han ocurrido en México en el periodo determinado.

Han ocurido 51 ciclones

Quiero el nada mas el apoyo por favor con la pregunta 3

3. Argumenta la posibilidad de ocurrencia de ciclones tropicales en México. En un documento, menciona cuál de los tipos de distribución de probabilidad permitirían hacer una proyección sobre los posibles ciclones tropicales en México, con base en ello argumenta cuál sería la posibilidad de ocurrencia.

1 Respuesta

Respuesta
60

·

·

¡Hola Ángel!

La distribución que modela sucesos que ocurren de repente sin que importe la cantidad de veces que han sucedido antes es la distribución de Poisson. Es la distribución que te permitirá conocer la probabilidad de que haya 10, 12, 17, 33, cualquier cantidad de ciclones que quieras que haya, incluso ninguno. Para la distribución de Poisson solo necesitamos conocer la media de acontencimientos sucedidos en un periodo de tiempo. Aquí tenemos los ciclones sucedidos en tres años que son 51. Con ese dato podemos estimar la probabilidad de que sucedan n ciclones en cualquier periodo de tiempo, basta con tomar los ciclones que corresponderían "por regla de tres" a ese periodo de tiempo, ese parámetro se llamaría lambda y la fórmula es esta.

$$\begin{align}&P(n)= \frac{e^{-\lambda}\lambda^k}{k!}\\&\\&\text{Por ejemplo, la probabilidad de que haya 20 ciclones en un año}\\&\\&\text{Si a tres años corresponden 51 ciclones}\\&\text{a un año corresponden }\frac {51}3=17\\&\\&P(20)= \frac{e^{-17}·17^{20}}{20!}=0.0691588\end{align}$$

Naturalmente que a lo mejor lo que nos interesa es la probabilidad de que haya 20 o más.  Eso se puede hacer pero lleva un poco de trabajo, quizá demasiado para una calculadora y habría que usar un programa, una tabla de excel, o directamente la función de Excel.

Para el ejemplo anterior deberiamops calcular la suma de las probabilidades de que haya 19 o menos, eso se hace con la función:

=POISSON.DIST(19;17;1)

Que nos da 0,73632172

Entonces la probabilidad de que haya 20 o más será

1- 0,73632172 = 0,26367828

Y así podríamos hacer cualquier estudio que quisiéramos.

Y eso es todo, sa lu dos.

:

:

Veo que eres nuevo. Esto no consiste en que yo me someta a examen, consiste en que te ayude o no te ayude, y si no valoras excelente la respuesta y el trabajo que me ha suspuesto no te daré más respuestas. Puedes cambiar la valoración aquí abajo.

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas