·
·
¡Hola Esneider!
Esta no es una pregunta para contestar rápidamente, hay que hacer las cuentas. El excedente del consumidor es el área de lo que queda por arriba de la horizontal del punto de equilibrio. Si el punto de equilibrio es (xo, yo) el excedente del consumidor es:
$$\begin{align}&EC(x_0)=\int_0^{x_0} (D(x)-y_0) dx= \int_0^{x_0} D(x)\;dx-x_0y_0=\\&\\&\int_0^{x_0}(1200-0.2x-0.0001x^2)dx-x_0(1200-0.2x_0-0.0001x_0^2)=\\&\\&1200x_0-0.1x_0^2-\frac{0.0001x_0^3}{3}-1200x_0+0.2x_0^2+0.0001x_0^3=\\&\\&\frac{0.0002}{3}x_0^3+0.1x_0^2\\&\\&EC(x_0=600)=\frac{0.0002}{3}600^3+0.1·600^2=50400\\&\\&EC(x_0=700)=\frac{0.0002}{3}700^3+0.1·700^2=71866.6666...\end{align}$$
Luego las respuestas buenas son la 3 y 4, la respuesta es la d)
Y eso es todo, sa lu dos.
:
: