;)
Hola Fran Garsan!
Si x es cualquier Real, no necesariamente entero, entonces yo haría la integral impropia:
$$\begin{align}&\sum_1^{\infty}xa^x= \int_1^{\infty}xa^xdx\\&\\&\int xa^xdx= Por\partes=\\&\\&\\&x=u \Rightarrow du=dx\\&a^x dx=dv \Rightarrow v= \int a^xdx=\frac{a^x}{lna}\\&\\&\int u dv=uv- \int v du\\&\\&=x \frac{a^x}{lna}- \int \frac{a^x}{lna}dx= \frac{xa^x}{lna}- \frac{a^x }{ln^2a}\\&\\&\int_1^{\infty}xa^xdx=\lim_{x \to \infty} \Bigg[\frac{xa^x}{lna}- \frac{a^x }{ln^2a} \Bigg]-\lim_{x \to 1^+} \Bigg[\frac{xa^x}{lna}- \frac{a^x }{ln^2a} \Bigg]=\\&\\&0-\lim_{x \to 1^+} \Bigg[\frac{xa^x}{lna}- \frac{a^x }{ln^2a} \Bigg]=- \Bigg[\frac{a}{lna}-\frac{a}{ln^2a} \Bigg]=\frac{a-a·lna}{ln^2a}= \frac {a(1-lna)}{ln^2a}\\&\\&\end{align}$$
Saludos
;)
;)