Calcular cuatro derivadas parciales de segundo orden.𝐷11𝑧, 𝐷22𝑧, 𝐷12𝑧 = 𝐷21𝑧 𝑧 = (𝑥^2 + 𝑦^2)𝑡𝑎𝑛−1 𝑦/x

Calcular las cuatro derivadas parciales de segundo orden. Observar que las derivadas parciales mixtas de segundo orden son iguales. 𝐷11𝑧, 𝐷22𝑧, 𝐷12𝑧 = 𝐷21𝑧

1 respuesta

Respuesta
1

;)
Hola Cristian Fabian!

Recuerda que has de votar las respuestas.

A la función tan^-1  (y/x)   se le llama arctan(y/x)

$$\begin{align}&z=(x^2+y^2)arctan \frac y x\\&\\&D_x=2x·arctan \frac y x+(x^2+y^2)· \frac{ \frac {-y}{x^2}}{1+ \Big( \frac y x \Big)^2}= 2x arc tan \frac y x -\frac{y(x^2+y^2)}{ \frac {x^2(x^2+y^2)}{x^2}}= 2x arctan \frac y x-y\\&\\&D_{xx} =2 arc tan \frac y x +2x· \frac{ \frac {-y}{x^2}}{1+( \frac y x)^2}=2· arctan  \frac y  x- \frac {2xy}{x^2+y^2}\\&\\&D_{yx} = \frac {d}{dy}(2· arctan  \frac y  x- \frac {2xy}{x^2+y^2})= 2x· \frac { \frac 1 x}{1+( \frac y x)^2}-1=\frac 2{ \frac{x^2+y^2}{x^2}}-1= \frac {2 x^2}{x^2+y^2}-1= \frac{x^2-y^2}{x^2+y^2}\\&\\&D_y=2y arctan \frac y x +(x^2+y^2)· \frac { \frac 1 x}{1+( \frac y x)^2}= 2y arctan \frac y x+ \frac{ \frac {(x^2+y^2)} x}{\frac{x^2+y^2} {x^2}}=2y· arctan \frac y x+ x\\&\\&D_{xy}= \frac {d}{dx}( 2y· arctan \frac y x+ x)= 2y· \frac{ \frac{-y}{x^2}}{1+( \frac y x )^2}+1=\frac{ \frac{-2y^2}{x^2}}{ \frac {x^2+y^2}{x^2}}+1= \frac{-2y^2}{x^2+y^2}+1= \frac{-2y^2+x^2+y^2}{x^2+y^2}=\\&\\&\frac{x^2-y^2}{x^2+y^2}=D_{yx}\\&\\&D_{yy}= \frac d {dy}(2y ·arctan \frac y x +x)= 2 arc tan \frac  y x + \frac {2yx}{x^2+y^2}\end{align}$$

Saludos

;)

;)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas