1. Dy/dx=2(y/x)+(y/x)^3; u=y/x; y=ux; dy=xdu + udx; reemplazo:
(xdu + udx) / dx = 2u + u^3;
x(du/dx) + u = 2u + u^3;
x(du/dx)= u + u^3;
du/(u+u^3) = dx/x;
du/ [u(1+u^2)] = dx/x
A la izquierda: CDV: s = 1+u^2; ds=2u*du; du=ds/2u; además: u^2= s-1; reemplazo:
ds/ 2u^2; o: ds/2(s-1);
(1/2) ∫ ds/(s-1) = ∫ dx/x;
(1/2) ln |s-1| = ln |x| + C; devuelvo variable:
(1/2) ln |1+u^2 - 1| = ln |x| + C; hagamos C=lnA, que también es una constante:
ln |u| = ln |x| + lnA
### u = Ax
Dy/dx+xy=1+x; dy/dx = 1+x-xy;
dy/dx = 1+ x(1-y); CDV: t=1-y; dt=-dy;
- (dt/dx) = 1+tx; o: dt/dx = -1-tx;
dt/dx + tx = -1; ED lineal:
µ = e^ ∫ x*dx; µ = e^(1/2) x^2; µ = (1/2) e^(x^2);
d t [(1/2)e^(x^2)] = -(1/2) e^(x^2) dx; integro:
(***) t*[(1/2)e^(x^2)] = -(1/2) ∫ e^(x^2) dx.
Para la integral de la derecha partimos de:
∫ 2xe^(x^2);
u=e^(x^2); du= 2x*e^(x^2)*dx;
v= 1/2x; dv= (1/2) ln |x|*dx;
∫ 2xe^(x^2) = [e^(x^2) / 2x] - {∫ [2x*e^(x^2)*dx] / 2x};
∫ 2xe^(x^2) = [e^(x^2) / 2x] - ∫ e^(x^2)*dx;
∫ e^(x^2)*dx = [e^(x^2) / 2x] - ∫ 2xe^(x^2); integro a la derecha:
∫ e^(x^2)*dx = [e^(x^2) / 2x] - e^(x^2) + C; Reemplazo en (***):
t * [(1/2)e^(x^2)] = -(1/2)*{[e^(x^2) / 2x] - e^(x^2) + C} ;
t * e^(x^2)] = - {[e^(x^2) / 2x] - e^(x^2)+ C};
t = - {[1/ (2x)] - 1};
t = 1 - (1/2x) + [C/e^(x^2)]