Te dejo los dos primeros.
$$\begin{align}&\text{Definición de derivada en }x_0\\&f'(x_0)=\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}\\&---\\&a) f(x) = x^3........x_0=1\\&f'(1)=\lim_{h \to 0} \frac{f(1+h)-f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^3-1^3}{h}=\\&\lim_{h \to 0} \frac{1^3+3\cdot 1^2 \cdot h+3\cdot 1\cdot h^2+h^3-1^3}{h}=\lim_{h \to 0} \frac{3h+3h^2+h^3}{h}=\\&\lim_{h \to 0} \frac{h(3+3h+h^2)}{h}=\lim_{h \to 0} (3+3h+h^2)=3\\&...\\&b) f(x) = \sqrt{x+4}....x_0=0\\&f'(0)=\lim_{h \to 0} \frac{f(0+h)-f(0)}{h} = \lim_{h \to 0} \frac{\sqrt{(0+h+4)}-\sqrt{0+4}}{h}=\\&\lim_{h \to 0} \frac{\sqrt{(h+4)}-\sqrt{4}}{h}=\lim_{h \to 0} \frac{\sqrt{(h+4)}-\sqrt{4}}{h}\cdot \frac{\sqrt{(h+4)}+\sqrt{4}}{\sqrt{(h+4)}+\sqrt{4}}=\\&\lim_{h \to 0} \frac{(h+4)-4}{h(\sqrt{(h+4)}+\sqrt{4})}=\lim_{h \to 0} \frac{h}{h(\sqrt{(h+4)}+\sqrt{4})}=\\&\lim_{h \to 0} \frac{1}{\sqrt{(h+4)}+\sqrt{4}}=\frac{1}{4}\end{align}$$
Espera que otro experto te resuelva el tercero o envíalo en una nueva pregunta.
Salu2