Un recipiente centrifugado de 10 pulg de diámetro interior esta girando a 4000 rpm.

Quien que me pueda ayudar con este ejercicio, no logro entenderlo.

1 respuesta

Respuesta
2

Este problema tiene dos posibles vias de solucion, de acuerdo a si pertenece a la escuela secundaria o a alguna carrera de ingenieria. Existe una "solucion simple pero erronea" (que probablemente es la que quiera el profesor) y una "solucion real" que es bastante compleja.

La presion sobre la pared, es la que ejerce la fuerza centrifuga del liquido del interior al moverse. A eso se sumaria la presion atmosferica, pero como el exterior tambien esta sometico a la presion atmosferica, ambas se compensan y no hacen al calculo.

La "Fuerza centrifuga" se calcula como el producto de la masa por el cuadrado de la velocidad, y todo eso dividido por el radio de giro.

Primeramente habria que pasar todo al mismo tipo de unidades (Porque en Colombia los profesores son tan dados a mezclar unidades, ¿qué solo confunden al estudiante?). Tienes el radio, la velocidad de giro... y ahi se puede calcular.

Pero eso TIENE UN ERROR, por eso preguntaba al principio: Si uno quiere hacer "los calculos BIEN", la capa de Clorobenceno, es comparable al radio, y por lo tanto, la fuerza centrifuga no seria la misma en la capa del liquido mas cercana al eje de giro que en la capa del liquido cercana a la pared del recipiente, como tampoco las velocidades... con lo cual, la presion saldria de una ecuacion de integrales que habria que plantear. Si el ejercicio es algo para la carrera de Ingenieria, seguramente tendrias que usar este segundo metodo, si es para escuela secundaria, el primero, y te olvidas de la integral, y supones que todo gira a la misma velocidad (aunque no sea cierto)

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas