$$\begin{align}&48=xy\\&\\&Pitágoras PHS\\&13^2=y^2+(x-z)^2\\&\\&Pitágoras \ RHQ\\&\\&4^2=z^2+y^2\\&\\&Restandoº las \ dos \ últimas\\&169-16=(x-z)^2-z^2\\&\\&153= x^2-2xz+z^2-z^2\\&\\&153=x^2-2xz ==> z=\frac{x^2-153}{2x}\\&\\&Sustituyendo \ en \ la \ segunda:\\&y^2=16-z^2=16- \frac{x^4-306x^2+23409}{4x^2}= \frac{64x^2-x^4+306x^2-23409}{4x^2}\\&\\&y= \frac 1 {2x} \sqrt{64x^2-x^4+306x^2-23409}\\&\\&y= \frac 1 {2x} \sqrt{-x^4+370x^2-23409}\\&\\&sustituyendo º en \ la \ primera\\&48=xy\\&\\&48= \frac 1 2 \sqrt{-x^4+370x^2-23409}\\&\\&96=\sqrt{-x^4+370x^2-23409}\\&\\&elevandoº al\ cuadrado\\&\\&9216={-x^4+370x^2-23409}\\&\\&x^4-370x^2+32625=0\\&\\&ecuación\ bicuadrada\\&x^2=t\\&t^2-370t+32625=0\\&\\&t_1=225 ==> x_1=15 \ ===>\ y_1=\frac{48}{15}= \frac {16} 5=3,2\\&\\&t_2=145\ ===> x_2= \sqrt{145} \ ==> \ y_2= \frac{48}{145}\\&\end{align}$$
;)
Hola Sofía!!
PQ=x
QR=y HQ=z PH=x-z SH=13 HR=4
Area:
$$\begin{align}&48=xy\\&\\&Pitágoras PHS\\&13^2=y^2+(x-z)^2\\&\\&Pitágoras \ RHQ\\&\\&4^2=z^2+y^2\\&\\&Restandoº las \ dos \ últimas\\&169-16=(x-z)^2-z^2\\&\\&153= x^2-2xz+z^2-z^2\\&\\&153=x^2-2xz ==> z=\frac{x^2-153}{2x}\\&\\&Sustituyendo \ en \ la \ segunda:\\&y^2=16-z^2=16- \frac{x^4-306x^2+23409}{4x^2}= \frac{64x^2-x^4+306x^2-23409}{4x^2}\\&\\&y= \frac 1 {2x} \sqrt{64x^2-x^4+306x^2-23409}\\&\\&y= \frac 1 {2x} \sqrt{-x^4+370x^2-23409}\\&\\&sustituyendo º en \ la \ primera\\&48=xy\\&\\&48= \frac 1 2 \sqrt{-x^4+370x^2-23409}\\&\\&96=\sqrt{-x^4+370x^2-23409}\\&\\&elevandoº al\ cuadrado\\&\\&9216={-x^4+370x^2-23409}\\&\\&x^4-370x^2+32625=0\\&\\&ecuación\ bicuadrada\\&x^2=t\\&t^2-370t+32625=0\\&\\&t_1=225 ==> x_1=15 \ ===>\ y_1=\frac{48}{15}= \frac {16} 5=3,2\\&\\&t_2=145\ ===> x_2= \sqrt{145} \ ==> \ y_2= \frac{48}{145}\\&\end{align}$$
Saludos
;)
||*||