Polinomios calcular el valor de a y b para que

L(x).H(x)=6x al cuadrado-12x-35

H(x)=ax+5

H(x)=2x+b

Quiero saber el procedimiento

1 Respuesta

Respuesta
2

NO tengo claro como es el ejercicio propuesto, a ver si lo puedes aclarar para intentar ayudarte.

Es, L(x).H(x) =(6x)^2 -12x-35 ó es,  L(x). ¿H(x) =(6x)^2 -(12x-35) ó ninguna de las dos cosas?

Es la primera el producto de lis dos=6xalcuadrado-11 x-35

En vez de 12 es 11

Gracias

Yo creo que debe ser L(x).H(x) =6x^2 -11x-35 , y no  L(x).H(x) =(6x)^2 -11x-35 . 

¿Fíjate en la diferencia, el 6 no debe estar elevado al cuadrado.

Pues bien en este caso:

(ax+5).(2x+b) =2ax^2+abx+10x+5b. Para multiplicar los dos polinomios se multiplica cada término del primero por  cada uno de los términos del segundo.

Entonces: 2ax^2+abx+10x+5b=6x^2 -11x-35 (Esto sale de igualar los dos polinomios) .

Para que dos polinomios sean iguales deben serlo los coeficientes de los términos del mismo grado, por lo tanto:

Igualamos los coeficientes de x^2 y tenemos: 2a=6 por lo que despejando a=3

Igualamos los coeficientes de x, y tenemos ab+10=-11

Igualamos los términos independientes y tenemos, 5b=-35, por lo que al despejar b=-7.

Fíjate que la segunda igualdad también se cumple porque, substituyendo a por 3 y b por -7 se tiene: 3.(-7)+10= -21+10=-11

¿Te sirve de algo la ayuda?. Suerte

Añade tu respuesta

Haz clic para o

Más respuestas relacionadas