No lo aclaras, pero suponiendo que sea la sucesión que digo.
Primero veamos que es monótona creciente
$$\begin{align}&\binom{5(n+1)}{n+1}-\binom{5n}{n}=\\&\\&\frac{(5(n+1))!}{(n+1)!·(4(n+1))!}-\frac{(5n)!}{n!·(4n)!}=\\&\\&\frac{(5n+5))!·n!·(4n)!-(5n)!·(n+1)!·(4n+4))!}{(n+1)!·(4n+4))!·n!·(4n)!}=\\&\\&\frac{(5n)!·n!·(4n)![(5n+5)(5n+4)(5n+3)(5n+2)(5n+1)-(n+1)(4n+4)(4n+3)(4n+2)(4n+1)]}{(n+1)!·(4n+4))!·n!·(4n)!}\\&\\&Tenemos\\&5n+5\gt n+1\\&5n+4\gt 4n+4\\&5n+3 \gt 4n+3\\&5n+2\gt 4n+2\\&5n+1\gt 4n+1\\&\\&Luego\\&(5n+5)(5n+4)(5n+3)(5n+2)(5n+1)\gt (n+1)(4n+4)(4n+3)(4n+2)(4n+1)\implies\\&(5n+5)(5n+4)(5n+3)(5n+2)(5n+1)- (n+1)(4n+4)(4n+3)(4n+2)(4n+1)\gt 0\\&\\&\text {y por lo tanto la expresión que habíamos dejado es positiva}\\&\\&\binom{5(n+1)}{n+1}-\binom{5n}{n}\gt 0\\&\\&\binom{5(n+1)}{n+1}\gt\binom{5n}{n}\\&\\&\text{Luego es monotona creciente y la cota inferior es el primer elemento}\\&\\&CI = \binom 51=5\\&\\&\text{Y la cota superior no existe porque el límite es infinito}\\&\\&\frac{(5n)!}{n!·(4n)!}=\lim_{n\to \infty}\frac{5n·(5n-1)(5n-2)···(5n-n+1)}{n!}=\\&\\&\frac{5n}{n}·\frac{5n-1}{n-1}·\frac{5n-2}{n-2}···\frac{5n-n+1}{1}=\\&\\&5· \frac{5(n-1)+4}{(n-1)}·\frac{5(n-2)+8}{n-2}··· \frac{5·1+(5n-n-4)}{1}=\\&\\&\left[5·\left(5+\frac{4}{n-1}\right)·\left(5+\frac{8}{n-2}\right)···\left(5+\frac{4n-4}{1}\right)\right]\gt5^n\\&\\&\text{luego}\\&\\&\lim_{n\to\infty}\left[5·\left(5+\frac{4}{n-1}\right)·\left(5+\frac{8}{n-2}\right)···\left(5+\frac{4n-4}{1}\right)\right]\ge\lim_{n\to\infty}5^n=\infty\implies\\&\\&\lim_{n\to \infty} \binom{5n}{n}=\infty\\&\\&\end{align}$$
Y eso es todo, saludos.
:
: