Usemos la definición entonces...
$$\begin{align}&\text{Definición de derivada en }x_0\\&f'(x_0)=\lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}\\&---\\&f(x) = \frac{1}{x}-1........x_0=-1\\&f'(-1)=\lim_{h \to 0} \frac{f(-1+h)-f(-1)}{h} = \lim_{h \to 0} \frac{(\frac{1}{-1+h}-1)-(\frac{1}{-1}-1)}{h}=\\&\lim_{h \to 0} \frac{(\frac{1+1-h}{-1+h})-(-2)}{h}=\lim_{h \to 0} \frac{(\frac{2-h}{h-1})+2}{h}=\\&\lim_{h \to 0} \frac{\frac{2-h+2(h-1)}{h-1}}{h}=\lim_{h \to 0} \frac{2-h+2h-2}{(h-1)h}=\\&\lim_{h \to 0} \frac{h}{(h-1)h}=\lim_{h \to 0} \frac{1}{h-1} \to -1\end{align}$$
Salu2