;)
Hola José Lancaster!
$$\begin{align}&2xy dx=(3x^2-y^2)dy\\&\\&2dx= \frac{3x^2-y^2}{xy}dy\\&\\&2dx=( 3 \frac x y - \frac y x)dy\\&\\&u= \frac y x\\&y=ux\\&\\&\frac{dy}{dx}= \frac{du}{dx}x+ u\\&\text{sustituyendo dy/dx en} \\&2=( 3 \frac x y - \frac y x)\frac{dy}{dx}\\&\\&2=(\frac 3 u-u) \frac {dy}{dx}\\&\\&\frac {2u}{3-u^2}=\frac {dy}{dx}= \frac{du}{dx}x+ u\\&\\&\frac {2u}{3-u^2}= \frac{du}{dx}x+ u\\&\\&\frac {2u}{3-u^2}-u=x \frac{du}{dx}\\&\\&\frac{2u-3u+u^3}{3-u^2}= x \frac{du}{dx}\\&\\&\frac{u^3-u}{3-u^2}= x \frac{du}{dx}\\&\\&separando \ variables\\&\\&\frac{3-u^2}{u^3-u}= \frac{dx}{x}\\&\\&integrando:\\&\\&\int \frac{3-u^2}{u^3-u}= \int \frac{dx}{x}\\&\\&fracciones \ parciales \ \\&\\&-3ln|u|+ln|u+1|+ln|u-1|=lnc|x|\\&\\&ln \frac{|u^2-1|}{|u|^3}=ln\ c |x|\\&\\&ln \Bigg| \frac{\frac {y^2}{x^2}-1}{\frac {y^3}{x^3}} \Bigg|=lnc|x|\\&\\& \Bigg| \frac{\frac {y^2}{x^2}-1}{\frac {y^3}{x^3}} \Bigg|=c|x|\\&\\&\\&\\&\\&\\&\\&\\&\end{align}$$
La integral es sencilla , en fraciones parciales.
Si no te sale, la mandas en otra pregunta
Repasa las cuentas
Saludos
;)
||*||
;)