$$\begin{align}&u=tan(\frac{x}{2})\\&\\&tan^{-1}u=x/2\\&\frac{1}{1+u^2}du=\frac{dx}{2}\\&dx=\frac{2}{1+u^2}du\\&\\&sinx=\frac{2u}{1+u^2}\\&cosx=\frac{1-u^2}{1+u^2}\\&\\&\int \frac{1}{(1-\frac{1-u^2}{1+u^2})^2}\frac{2}{1+u^2}du\\&\int \frac{1}{(\frac{1+u^2-(1-u^2)}{1+u^2})^2}\frac{2}{1+u^2}du\\&\int \frac{1}{(\frac{2u^2}{1+u^2})^2}\frac{2}{1+u^2}du\\&\int \frac{1}{\frac{4u^4}{1+u^2}}2du\\&\int \frac{1+u^2}{2u^4}du=\\&\frac{1}{2}(\frac{-1}{3u^3}-\frac{1}{u})=\\&-\frac{1}{2}(\frac{1}{3tan^3(\frac{x}{2})}+\frac{1}{tan((\frac{x}{2})})+C\\&\\&\\&\\&\end{align}$$
La sustitucion u=tanx/2 es muy util cuando hay fracciones con senos y cosenos. Para obtener los valores del seno y coseno hay que usar las formulas del angulo doble