;)
Explicaciones teóricas en:
Enlace 1
Enlace 2
Definición de límite:
$$\begin{align}&\lim_{x \to a} f(x)=L \Leftrightarrow \forall \epsilon>0 \ \ \ \exists \delta\ \ \ /|x-a|< \delta==> |f(x)-L|< \epsilon\\&\\&Luego \ si \ \ |x-2|< \delta \\&\ hemos \ de \ buscar \ la \ relación \ entre \ \epsilon \ y \ \ \delta\\&\\&\Bigg|\frac{x-2}{1+x^2}-0\Bigg|< \ \epsilon\\&\\&\Bigg|\frac{x-2}{1+x^2}\Bigg|=|x-2|· \frac{1}{1+x^2}< \epsilon\\&\\&cojamos \ un \ delta \ cualquiera:\\&\delta=\frac 1 {10}==> |x-2|< \frac 1 {10} ==> - \frac 1 {10} < x-2 < \frac 1 {10}==>\\&\\&- \frac 1 {10} +2< x < \frac 1 {10} +2\\&\\&\frac {19} {10} < x < \frac {21} {10}==>\frac {19^2} {100} < x^2 < \frac {21^2} {100} ===>\\&\\& \frac {19^2} {100}+1 < x^2 +1 < \frac {21^2} {100} +1==>\\&\\& \frac {361} {100}< x^2 +1 < \frac {541} {100} ==>\\&\\&\frac{100}{361}> \frac 1 {x^2+1} >\frac{100}{541}\\&\\&\frac{100}{361} \ es \ una \ cota \ superior \ de \ \frac{1}{x^2+1}\\&\\&\\&\\&como\\& |x-2|< \delta\\&\\&|x-2|· \frac 1 {x^2+1}< \epsilon\\&\\&\delta· \frac{100}{361} < \epsilon ==> \delta< \frac{361}{100} \epsilon\\&\\&Luego \ para \ cualquier \ \epsilon , tomando \ \delta=min\{ \frac 1 {10}, \frac{361 \epsilon}{100} \}\\&\\&\\&\\&\\&\\&\\&\\&\end{align}$$
se cumple la definición
Saludos
;)
;)